U S Sajeev
Articles written in Bulletin of Materials Science
Volume 27 Issue 2 April 2004 pp 155-161 Magnetic Materials
V S Abraham S Swapna Nair S Rajesh U S Sajeev M R Anantharaman
Ultra fine precursors for ferrofluid synthesis, belonging to the series, Ni𝑥Fe1-𝑥Fe2O4 (where `𝑥’ varies from `0’ to `0.6’ in steps of 0.1), were synthesized. Ferrofluids based on these fine particles were prepared with oleic acid as surfactant and kerosene as carrier. Ferrofluidic thin films were made on glass substrates and magnetic field induced laser transmission was studied. The pattern exhibited by the films under the influence of a magnetic field was observed with the help of a CCD camera. The analysis of results confirms the chain formation of particles in the presence of an applied magnetic field and their saturation at higher applied fields.
Volume 29 Issue 2 April 2006 pp 159-163 Thin Films
On the optical and electrical properties of rf and a.c. plasma polymerized aniline thin films
U S Sajeev C Joseph Mathai S Saravanan Rajeev R Ashokan S Venkatachalam M R Anantharaman
Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected
Volume 31 Issue 3 June 2008 pp 343-351
Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning
U S Sajeev K Anoop Anand Deepthy Menon Shanti Nair
Aqueous solutions of polyvinyl alcohol (PVA) were electrospun and its characteristics were studied as a function of applied potential, tip-target distance and solution flow rate. Solutions of PVA and chitosan were homogeneously mixed and electrospun to result in blend nanofibres and their properties were investigated. Conditions were revealed under which multiscale bi-modal fibres could be electrospun in a single step, producing structures that have potential applications in tissue engineering. Electrospun fibres having a bimodal size distribution of poly(caprolactone) (PCL) were also fabricated using a modified electrospinning setup. Nanofibrous microporous PVA scaffolds were fabricated using a cryogenic grinding method with subsequent compaction. Such multiscale porous structures would offer ideal matrices for tissue engineering applications.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.