Thotapalli P Sastry
Articles written in Bulletin of Materials Science
Volume 34 Issue 1 February 2011 pp 177-181
Gunasekaran Krithiga Thotapalli P Sastry
Egg shells which were hitherto discarded as wastes were collected, purified and powdered into a particle size in the range of 5–50 𝜇m. A composite bone graft material in cylindrical form was prepared using egg shell powder (ESP), bone ash (BA) and gelatin. These bone grafts were characterized for their FT–IR, TGA, XRD, SEM and mechanical properties. The mechanical studies indicate that the composite having a stoichiometric ratio of BA (3 g) and ESP (7 g) has shown better mechanical properties. X-ray diffraction (XRD) data indicated the crystallographic nature of BA is akin to hydroxyapatite (HA) and both BA and ESP did not lose their crystalline nature when bone grafts were prepared. This revealed that ESP may be used as a component in bone graft utilizing the solid waste from the poultry industry.
Volume 37 Issue 3 May 2014 pp 729-733
Krithiga Gunasekaran Santhosh Kumar Baskar Divya Sapphire Mohan Thotapalli P Sastry
A resorbable composite which acts as a active barrier in guided bone regeneration was fabricated using chitosan, demineralized bone matrix and bone ash. Its potential to form bone like apatite in simulated body fluid was assessed in this study. The mechanical strength of these composites was correlated with bone ash ratios and composites with better tensile strength were studied for their acellular bioactivity by incubating in simulated body fluid for 21 days. Composites without bone ash did not show acellular bioactivity which was confirmed by thermogravimetric analysis. In case of biocomposites with bone ash, there was an increase in residual weight indicating the mineralization of the composite. The composite containing bone ash has shown the peaks related to phosphate vibrations in its Fourier-transform infrared spectrum. Scanning micrographs revealed formation of apatite like crystals on its surface. Ca/P ratio was found to be 1.7 which is nearer to that of natural bone. Thus, prepared composites can be used as resorbable biocomposite in maxillofacial and oral defects.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.