T SEDDIK
Articles written in Bulletin of Materials Science
Volume 40 Issue 6 October 2017 pp 1105-1110
I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R AHMED SALEEM A KHAN A BOUHEMADOU SIKANDER AZAM S BIN OMRAN
We report the results of the full-potential linearized augmented plane wave (FP-LAPW) calculations on the structural, elastic, optoelectronic and magnetic properties of CdHo$_2$S$_4$ spinel. Both the generalized gradient approximation (GGA) and Trans-Blaha modified Becke-Johnson potential (TB-mBJ) are used to model the exchange-correlation effects. The computed lattice parameter, internal coordinate and bulk modulus are in good agreement with the existing experimentaldata. According to the calculated elastic moduli, CdHo$_2$S$_4$ is mechanically stable with a ductile nature and a noticeableelastic anisotropy. The ferromagnetic phase of CdHo2S4 is energetically favourable compared to non-magnetic one, with ahigh magnetic moment of about 8.15 $\mu$B. The calculated band structure demonstrates that the title compound is a direct bandgap semiconductor. The TB-mBJ yields a band gap of $\sim$1.86 and $\sim$2.17 eV for the minority and majority spins, respectively.The calculated optical spectra reveal a strong response in the energy range between the visible light and the extreme UVregions.
Volume 43 All articles Published: 12 June 2020 Article ID 0138
SIKANDER AZAM MUHAMMAD IRFAN MUHAMMAD WAQAS IQBAL MUHAMMAD ARSHAD KAMRAN R KHENATA T SEDDIK BANAT GUL M SHOAIB M SOHAIL SALEEM AYAZ KHAN S H NAQIB T OUAHRANI XIAOTIAN WANG
A number of ternary-semiconductor oxides have shown promise for potential applications in catalysis, thermoelectricity, optoelectronics and electrochemistry. In this work, the thermoelectric and optoelectronic properties of La$_2$Pd$_2$O$_5$ compound are studied by the full-potential linearized augmented plane wave method based on density functional theory. The electronic band structure shows an indirect band gap of 1.342 eV for La$_2$Pd$_2$O$_5$. Partial and total density of states indicate strong hybridization among different electronic orbitals. The upper part of the valence band is dominated by the Pd-d and O-p states, while the lower conduction band originates mainly from the Pd-d state. Dielectric functions including the imaginary and real parts, along with other optical constants, such as absorption coefficient, energy loss function, reflectivity and refractive index, have been reported for the first time. Thermoelectric properties, including electrical and thermal conductivity, Seebeck coefficient and power factor with variation in temperature are also presented and discussed using semi-classical Boltzmann transport theory for the first time for La$_2$Pd$_2$O$_5$. It has been found that La$_2$Pd$_2$O$_5$ has attractive optoelectronic and thermal properties that can make it a suitable candidate for efficient thermoelectric and optoelectronic device applications.
Volume 45 All articles Published: 23 June 2022 Article ID 0110
M MOUTASSEM T SEDDIK D E SI MOHAMMED M BATOUCHE H KHACHAI R KHENATA R AHMED V SRIVASTAVA A BOUHEMADOU A K KUSHWAHA S BIN OMRAN
In this study, an analysis of the effect of Na substitution on the electronic, structural and thermoelectric (TE) properties of the Li$_2$CuAs material is presented. The study is performed by employing the full-potential linearized augmented plane wave plus local orbital method designed within the density functional theory. To carry out the calculations related to the band structure, generalized gradient approximation by Wu-Cohen (WC-GGA) in combination with Trans Blaha-modified Becke-Johanson mBJ (TB-mBJ) potential is employed. Our results at the level of the WC-GGA approach show that there is no bandgap, whereas, at the level of the TB-mBJ approximation, the material displays bandgap with Na substitution, which is found to be further increased with the increasing Na concentration. To understand the role of different electronic states on the bandgap structure, the total and partial densities of states are also analysed. Furthermore, the temperature effect on the Seebeck coefficient, electronic thermal conductivity, electrical conductivity, power factor and figure of merit are computed. Our obtained results of the TE properties of Li$_2$CuAs at different Na compositions suggest that this compound is a potential candidate for thermoelectricity.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.