• T P Sastry

      Articles written in Bulletin of Materials Science

    • A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin

      G Saraswathy S Pal C Rose T P Sastry

      More Details Abstract Fulltext PDF

      With the aim of developing an ideal bone graft, a new bone grafting material was developed using deglued bone, chitosan and gelatin. Deglued bone (DGB) which is a by-product of bone glue industries and has the close crystallographic similarities of hydroxyapatite was used as main component in the preparation of bone implant. Chitosan was prepared from the exoskeleton of prawn (Pinaeus indicus, family Crustaceae) which is a by-product of seafood industries. Chitosan gives toughness to the product and do not allow the DGB particles to wither away when the implant is placed in the defect. Gelatin was used as binder for the preparation of DGB–chitosan composite. The DGB, chitosan and DGB–chitosan–gelatin composite, which were prepared in the laboratory, were analysed for their physicochemical properties by infrared spectroscopy, X-ray diffraction and scanning electron microscopy studies.

    • Mechanical and microstructure studies on the modification of CA film by blending with PS

      P Meenakshi S E Noorjahan R Rajini U Venkateswarlu C Rose T P Sastry

      More Details Abstract Fulltext PDF

      Dried Musa paradiciaca (banana) stem and veins of the leaves, which were hitherto discarded as a waste, were collected and used as starting material for the preparation of cellulose and cellulose acetate. This cellulose acetate was mixed with polystyrene to form blend of cellulose acetate–polystyrene in order to provide enhanced stability and extended utility to the end products. The films of these composites or their individual partners were made separately and studied for their mechanical properties, chemical modification and morphological changes. We report here that banana stem is good source of cellulose and that cellulose completely undergoes modification upon esterification.

    • In vitro study on biomineralization of biphasic calcium phosphate biocomposite crosslinked with hydrolysable tannins of Terminalia chebula

      G Krithiga Antaryami Jena P Selvamani T P Sastry

      More Details Abstract Fulltext PDF

      In this study, we report the preparation of a bone graft material, having cylindrical shape, containing biphasic calcium phosphate (BCP), gelatin (G), chitosan (C) and Terminalia chebula (TC) extract. TC extract was used as a crosslinker that gives stability to bone graft when it is placed in SBF. The graft was stable in the SBF solution for 21 days and FTIR, SEM, EDX and thermogravimetric studies revealed the ossification of the implant.

    • A novel wound dressing material — fibrin–chitosan–sodium alginate composite sheet

      M Pandima Devi M Sekar M Chamundeswari A Moorthy G Krithiga N Selva Murugan T P Sastry

      More Details Abstract Fulltext PDF

      The present study describes preparation and characterization of fibrin–chitosan–sodium alginate composite (F–C–SA) in sheet form. F–C–SA composite was prepared and characterized for its physicochemical properties like water absorption capacity, surface morphology, FTIR spectra and mechanical properties. The optimum quantities of fibrin, chitosan and sodium alginate to get better mechanical properties to composite were determined. FTIR spectrum confirmed the interaction between amino groups of chitosan, fibrin and sodium alginate and SEM studies revealed composite nature of the material.

    • Iron nanoparticles from blood coated with collagen as a matrix for synthesis of nanohydroxyapatite

      M Chamundeeswari B Santhosh Kumar T Muthukumar L Muthuraman K Purna Sai T P Sastry

      More Details Abstract Fulltext PDF

      A simple wet precipitation technique was used to prepare nanobiocomposite containing iron nanoparticles coated with collagen. This nanobiocomposite was used as matrix for the synthesis of nanohydroxyapatite. The physicochemical characteristic studies of the nanohydroxyapatite thus formed were carried out using fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energydispersive X-ray spectroscopy and X-ray diffraction technique to confirm the formation of hydroxyapatite on iron nanoparticle–collagen complex. The results of the above studies supported the formation of iron nanoparticle–collagen–hydroxyapatite composite. The biological studies such as biocompatibility and hemocompatibility were carried out for nanohydroxyapatite using different cell lines and blood sample. The results of biocompatibility and hemolytic assay revealed that the prepared nanobiocomposite was 100 % biocompatible and hemocompatible. This nanobiocomposite may be used for biomedical application such as injectables for targeted delivery and as scaffold for tissue engineering.

    • Study on osteopotential activity of Terminalia arjuna bark extract incorporated bone substitute

      G Krithiga T Hemalatha R Deepachitra Kausik Ghosh T P Sastry

      More Details Abstract Fulltext PDF

      Bark extract of Terminalia arjuna (TA) possesses potent medical properties and therefore, holds a reputed position in both Ayurvedic and Unani systems of medicine. Bone substitutes play an inevitable role in traumatic bone damages. Growth factors induce osteoinductivity, but suffer from limitations such as high cost and side effects. This study aims to evaluate the osteoinductive potential of bark extract of TA in bone substitutes. Bone substitutes prepared with TA bark extract were characterized for their physicochemical properties. In vitro biomineralization study was carried out using simulated body fluid. Cytotoxicity, alkaline phosphatase activity and mineralization potential were assessed using MG-63 cell lines. Scanning electron microscope revealed apatite formation on the surface after biomineralization. Thermogravimetric analysis showed 15% increase in residual weight by deposition of calcium and phosphate and their presence was identified by energy dispersive analysis. Increased alkaline phosphatase and calcium release was observed in bone substitutes prepared with TA extract compared with control. The functional groups of TA bark extract help in in vitro biomineralization. In MG-63 cells, it showed potential influence in cell differentiation. TA extract may be used as low-cost alternative for growth factors for treatment of fractured bones.

    • Biphasic calcium phosphate–casein bone graft fortified with Cassia occidentalis for bone tissue engineering and regeneration

      B Santhosh Kumar T Hemalatha R Deepachitra R Narasimha Raghavan P Prabu T P Sastry

      More Details Abstract Fulltext PDF

      Research on traditional herbs is gaining momentum owing to their potent medical properties, among which Cassia occidentalis (CO) is a promising herb, with osteogenic potential. The study investigates the efficacy of CO extract incorporated biphasic calcium phosphate as an osteoinductive material. Prepared bone implants were characterized physico-chemically using FT-IR, TGA, XRD, SEM and EDX. The implants were analysed further for mechanical and biological properties. The results revealed that CO extract-incorporated bone implants possessed better compression strength and it was able to induce proliferation and enhance alkaline phosphatase activity in SaOS-2 cells. The implant proves to be promising for bone tissue engineering, and hence it demands further in vivo evaluation.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.