T N Guru Row
Articles written in Bulletin of Materials Science
Volume 25 Issue 4 August 2002 pp 275-281 Phase Transitions
The room temperature structure of three compounds belonging to the Aurivillius family (𝑛 = 4), ABi4Ti4O15 (A = Ba, Sr or Pb) has been analysed. BaBi4Ti4O15 crystallizes in a tetragonal 𝐼4/𝑚𝑚𝑚 space group whereas SrBi4Ti4O15 and PbBi4Ti4O15 crystallize in the orthorhombic space group $A2_1am$. The starting model for the Sr and Pb analogues was derived from
Volume 32 Issue 3 June 2009 pp 337-342
Synthesis, structure and photocatalytic properties of 𝛽-ZrMo2O8
Prangya Parimita Sahoo S Sumithra Giridhar Madras T N Guru Row
Monoclinic ZrMo2O8 was synthesized via solid state method and single crystals of the title compound have been grown by the hydrothermal method. The crystals belong to monoclinic crystal system with space group 𝐶2/c (No. 15) with 𝑎 = 11.4243(19) Å, 𝑏 = 7.9297(6) Å, 𝑐 = 7.4610(14) Å and 𝛽 = 122.15(2)°, 𝑍 = 4. The bandgap of the compound was 2.57 eV. Unlike the other polymorphs of ZrMo2O8, the monoclinic form has unique crystallographic features with ZrO8 and Mo2O8 polyhedra. The photocatalytic activity of this compound has been investigated for the first time for the degradation of various dyes under UV irradiation and has been compared with the photoactivity of the trigonal form of ZrMo2O8. It has been observed that this compound exhibits specificity towards the degradation of cationic dyes.
Volume 36 Issue 1 February 2013 pp 163-170
A Banerjee D Saha T N Guru Row A K Shukla
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1.5M lead (II) methanesulfonate and 0.9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min-1. During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g−1 at a load current-density of 20 mA cm-2 with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.