• Sonal R Prajapati

      Articles written in Bulletin of Materials Science

    • A thermodynamic approach towards glass-forming ability of amorphous metallic alloys

      Sonal R Prajapati Supriya Kasyap Arun Pratap

      More Details Abstract Fulltext PDF

      A quantitative measure of the stability of a glass as compared to its corresponding crystalline state can be obtained by calculating the thermodynamic parameters, such as the Gibbs free energy difference (𝛥𝐺), entropy difference (𝛥𝑆) and the enthalpy difference (𝛥𝐻) between the super-cooled liquid and the corresponding crystalline phase. 𝛥𝐺 is known as the driving force of crystallization. The driving force of crystallization (𝛥𝐺) provides very important information about the glass-forming ability (GFA) of metallic glasses (MGs). Lesser the driving force of crystallization more is the GFA. The 𝛥𝐺 varies linearly with the critical size (𝑑𝑐). According to Battezzati and Garonne the parameter 𝛾 ( = (1−(𝛥𝐻𝑥/𝛥𝐻𝑚))/(1−(𝑇 𝑥/𝑇 𝑚))) in the expression for 𝛥𝐺 should be a constant (i.e., 0.8), but its uniqueness is not observed for all MGs. The thermal stability of various alloy compositions is studied by their undercooled liquid region (𝛥𝑇 = 𝑇 𝑥 − 𝑇 𝑔). Large 𝛥𝑇 𝑥 implies greater stability against crystallization of the amorphous structure. Other GFA parameters are also calculated and correlated with critical size (𝑑𝑐).

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.