• Sandeep Arya

      Articles written in Bulletin of Materials Science

    • Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

      Sandeep Arya Saleem Khan Suresh Kumar Rajnikant Verma Parveen Lehana

      More Details Abstract Fulltext PDF

      Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

    • Synthesis of copper–ferrous (CuFe) nanowires via electrochemical method and its investigations as a fluid sensor

      Saleem Khan Sandeep Arya Parveen Lehana Suresh Kumar

      More Details Abstract Fulltext PDF

      The special behaviour of nanowires with respect to electrical conductivity makes them suitable for sensing application. In this paper, we present a copper–ferrous (CuFe) nanowires based sensor for detection of chemicals. CuFe nanowires were synthesized by template-assisted electrochemical method. By optimizing the deposition parameters, continuous nanowires on a copper substrate were synthesized. The morphological and structural studies of the synthesized CuFe nanowires were carried out using scanning electron microscope (SEM) and X-ray diffraction (XRD). Substrates containing CuFe nanowires were moulded to form a capacitor. Different chemicals were used as dielectric in the capacitor which showed that the capacitance was a nonlinear function of the dielectric constant of fluid unlike the linear relation shown by conventional capacitors. This unique property of the nanowires based capacitors may be utilized for developing fluid sensors with improved sensitivity.

    • Biological and electrical properties of biosynthesized silver nanoparticles

      Madhulika Bhagat Shayana Rajput Sandeep Arya Saleem Khan Parveen Lehana

      More Details Abstract Fulltext PDF

      In this work, silver nanoparticles (AgNPs) were synthesized biochemically at room temperature using aqueous extract of rhizome of Rheum australe plant. The as-synthesized AgNPs were further studied for their morphological, biological and electrical characterization. The morphological studies, such as scanning electron microscopy, X-ray diffraction and UV–vis spectrum confirmed their successful synthesis. Biological analysis revealed their antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Electrical characterization showed that the conductivity of the mixture of AgNPs with DPPH assay is more than the AgNPs dispersed in distilled water. The obtained results may have potential applications as sensors.

© 2017 Indian Academy of Sciences, Bengaluru.