S ANNAPOORNI
Articles written in Bulletin of Materials Science
Volume 21 Issue 5 October 1998 pp 381-385 Materials Preparation
Preparation, characterization and optical properties of
Pratima Chauhan S Annapoorni S K Trikha
Volume 40 Issue 1 February 2017 pp 233-238
Dense-plasma-driven ultrafast formation of FePt organization on silicon substrate
ROHIT MEDWAL NEERU SEHDEV WANG YING R S RAWAT S ANNAPOORNI
This article demonstrates the removal of organic capping and promotion of long-range 2D organization of chemically synthesized FePt nanoparticles dispersed on Si$\langle 100\rangle$ substrate by means of pulsed H+ energetic ion irradiation using a dense plasma focus (DPF) device. The irradiation of energetic H$^+$ ions on FePt nanoparticles clearly resulted in enhanced structural and magnetic behaviour of the FePt nanoparticles as a function ofplasma focused irradiation shots. Transmission electron microscopy (TEM)/scanning electron microscopy (SEM) images of the FePt nanoparticles clearly show a marked enhancement in average particle size from 2.5 nm for nonirradiated sample to about 28nm for four plasma focus shots irradiation. The gradual removal of organic capping over chemically synthesized FePt nanoparticles with increasing plasma focus shots exposure is confirmed usingRaman spectroscopy. A uniform 2D organization of bimetallic FePt nanoparticles over 1 cm $\times$ 1 cm silicon substrate is obtained with three plasma focus shots with better magnetic properties as compared with plasma-untreated FePtnanoparticles.
Volume 43 All articles Published: 21 February 2020 Article ID 0078
A study on defect annealing in GaAs nanostructures by ion beam irradiation
ONKAR MANGLA SAVITA ROY S ANNAPOORNI K ASOKAN
In this study, annealing of deep level (EL2) defect in gallium arsenide (GaAs) nanostructures by argon ion beam irradiation has been reported. GaAs nanodots of diameter ranging from 15 to 22 nm were deposited on silicon substratesusing the ions of GaAs generated by hot, dense and extremely non-equilibrium argon plasma in a modified dense plasma focus device. GaAs nanodots thus obtained were irradiated by Ar$^{2+}$ ion beam of energy 200 keV with varying ion fluences from $1 \times 10^{13}$ to $5 \times 10^{15}$ ions cm$^{−2}$ in the low energy ion-beam facility. The ion-beam irradiation transformed the as deposited GaAs nanodots into uniform GaAs nanostructured films of thickness $\sim$30 nm. The obtained nanostructured films are polycrystalline with paucity of arsenic antisite (EL2) deep level defect. The excess arsenic present in the as-deposited GaAs nanodots is the main cause of EL2 defect. Raman and photoluminescence measurements of GaAs nanostructured films indicates removal of excess arsenic, which was present in as-deposited GaAs nanodots, thereby suggesting annealing of EL2 defect from the ion-irradiated GaAs nanostructured films. The change in conductivity type from n- to p-type obtainedfrom Hall measurement further confirms annealing of EL2 defects. The ion-irradiated GaAs nanostructured films have low leakage current due to removal of defects as obtained in current–voltage study, which corroborate the annealing of EL2 defect. The defect-free GaAs nanostructured films thus obtained have potential applications in fabrication of highly efficient optoelectronic and electronic devices.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.