Articles written in Bulletin of Materials Science

    • Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

      Amitava Majumdar Sunirmal Jana

      More Details Abstract Fulltext PDF

      Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness.

      Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

    • Fabrication and characterization of sol–gel-based coatings on quartz glass to obtain antireflective effect at 1054 nm for optics of high power Nd:phosphate glass laser


      More Details Abstract Fulltext PDF

      In order to obtain higher laser-induced damage threshold (LIDT) and lower loss of laser radiation, the incident radiation must have an insignificant absorbance and high anti-reflectance. In this work, a single-layer porous SiO$_2$-based anti-reflective (AR) coating for the optics of Nd:phosphate laser system has been developed on quartz glass optics adopting sol–gel dip coating technique, following quarter wavelength optical design. As measured by spectroscopic ellipsometer, the refractive index (RI) of the coated layer is found to be ${\sim}$1.2. A maximum transmittance of ${\sim}$99% in single-layer-coated quartz glass has been achieved at 1054 nm. In addition, the non-quarter wavelength-based doublelayer with an optical design (glass/ 0.7153 M / 1.134 L / air) and triple-layer AR coating with an optical design (glass / 0.28 H / 1.65 M / 1.03 L / air, where H, M and L indicate one-quarter wave thick layers of high, medium and low RI materials) have been fabricated. The deposition of M and H layers has been made from mixed metal oxide precursor sols of zirconia-silica, while L has been made from silica precursor sol to obtain porous silica coating. A maximum transmittance of about 98.1 and 97.6% was found at 1054 nm in double- and triple-layer AR-coated samples, respectively. The LIDT values have been measured on the AR coatings. Based upon the number of layers in the AR coatings, the LIDT values varied in the range of 8.7–2.4 J cm$^{–2}$ starting from single to double to triple layer. The AR coatings developed by sol–gel dip coating technique could find application in Nd:phosphate high power laser system.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.