Articles written in Bulletin of Materials Science

    • Effect of back electrode on trap energy and interfacial barrier height of crystal violet dye-based organic device


      More Details Abstract Fulltext PDF

      In this work, we have studied the effect of aluminium-coated mylar (Al–M) sheet-based back electrode and aluminium (Al)-coated back electrode on trap energy ($E_{\rm t}$) and barrier height ($\phi_{\rm b}$) of crystal violet (CV) dye-based organic device. Two devices have been prepared using two different back electrodes. In both the devices, ITO-coated glass is used as front electrode. Both the organic devices have been prepared by using spin-coating techniques. We have measured the steady state current–voltage ($I –V$) characteristics of these devices to estimate the trap energy ($E_{\rm t}$) and barrier height ($\phi_{\rm b}$) of the devices. Because of the insertion of a reflecting back electrode, the charge carriers are confined in the active layer, which reduces the $E_{\rm t}$ from 0.044 to 0.034 eV and $\phi_{\rm b}$ is reduced from 0.80 to 0.77 eV. The barrier height is also estimated by using another alternative method, which is known as Norde method. By using Norde method, $\phi_{\rm b}$ is estimated, which reduces from 0.83 to 0.79 eV in the presence of reflecting back electrode. Both the methods show good consistency with each other. The reductions of these parameters indicate the enhancement of charge injection through the metal-organic dye interface. With the use of polished back electrode in the CV dye-based organic device, it is possible to modify the barrier height and trap energy and thereby modifies the conductivity.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.