Articles written in Bulletin of Materials Science

    • Synthesis of nanocrystalline materials through reverse micelles: A versatile methodology for synthesis of complex metal oxides

      Ashok K Ganguli Sonalika Vaidya Tokeer Ahmad

      More Details Abstract Fulltext PDF

      We have been successful in obtaining monophasic nanosized oxides with varying chemical compositions using the reverse micellar method. Here we describe our methodology to obtain important metal oxides like ceria, zirconia and zinc oxide. The oxalate of cerium, zirconium and zinc were synthesized using the reverse micellar route. While nanorods of zinc oxalate with dimension, 120 nm in diameter and 600 nm in length, could be obtained, whereas spherical particles of size, 4–6 nm, were obtained for cerium oxalate. These precursors were heated to form their respective oxides. Mixture of nanorods and nanoparticles of cerium oxide was obtained. ZrO2 nanoparticles of 3–4 nm size were obtained by the thermal decomposition of zirconium oxalate precursor. ZnO nanoparticles (55 nm) were obtained by the decomposition of zinc oxalate nanorods. Photoluminescence (PL) studies at 20 K shows the presence of three peaks corresponding to free excitonic emission, free to bound and donor–acceptor transitions. We also synthesized nanoparticles corresponding to Ba1–𝑥Pb𝑥ZrO3 using the reverse micellar route. The dielectric constant and loss were stable with frequency and temperature for the solid solution.

    • Ternary alloy nanocatalysts for hydrogen evolution reaction


      More Details Abstract Fulltext PDF

      Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards HER in alkaline medium was achieved by the formation of alloys of metals with low and high binding energies. A high value of current density (228 mA cm$^2$) at an overpotential of 545 mV was obtained for CuFeNi (A1), which is significantly high as compared to the previously reported Ni$_{59}$Cu$_{41}$ alloy catalyst.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.