• S Singh

      Articles written in Bulletin of Materials Science

    • Influence of thermomechanical aging on fatigue behaviour of 2014 Al-alloy

      S Singh D B Goel

      More Details Abstract Fulltext PDF

      The fatigue behaviour of 2014 Al-alloy has been studied in various thermomechanically aged conditions. It is observed that fatigue properties can be improved by a thermomechanical treatment, which would reduce the concentrations of dispersoids, provide a relatively uniform deformation structure and produce fine distribution of 𝜃' precipitates. Fine 𝜃' particles inhibit dynamic recovery and produce uniform deformation structure, which improves fatigue behaviour. Presence of dispersoids and coarse precipitate particles leads to the formation of persistent slip bands (PSBs) and a highly heterogeneous deformation structure, which cause damage to fatigue properties.

    • A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell

      J Datta S Singh S Das N R Bandyopadhyay

      More Details Abstract Fulltext PDF

      The electro-oxidation of ethanol was studied over nanosized Pt and different compositions of PtRu catalysts synthesized by the borohydride reduction method. Physicochemical characterizations of the catalyst material were made by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX analysis and transmission electron microscopy (TEM). XRD patterns showed that Ru induces a contraction of the Pt lattice. EDX provided the composition of binary catalysts while TEM images indicated uniform distribution of discrete nanoparticle of the catalysts with narrow range. The electro-catalytic activities of the materials towards ethanol oxidation were investigated through electrochemical techniques, viz. cyclic voltammetry (CV), potentiodynamic polarization, chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) at room temperature. The onset potential of ethanol electro-oxidation is lowered on bimetallic PtRu catalysts compared to that on Pt alone. Of the investigated catalyst compositions the one with the highest electrocatalytic activity was found to be Pt82Ru18. This enhancement towards ethanol oxidation is explained on the basis of a structural effect and modified bi-functional mechanism.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.