• S Pitchumani

      Articles written in Bulletin of Materials Science

    • Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

      A K Sahu S Pitchumani P Sridhar A K Shukla

      More Details Abstract Fulltext PDF

      Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

    • PEDOT–PSSA as an alternative support for Pt electrodes in PEFCs

      K K Tintula S Pitchumani P Sridhar A K Shukla

      More Details Abstract Fulltext PDF

      Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT–PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT–PSSA composite also helps reducing Nafion content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT–PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT–PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT–PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm-2 at a load current-density of 1800 mA cm-2 with Nafion content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes.

    • Pt–Au/C cathode with enhanced oxygen-reduction activity in PEFCs

      G Selvarani S Vinod Selvaganesh P Sridhar S Pitchumani A K Shukla

      More Details Abstract Fulltext PDF

      Carbon-supported Pt–Au (Pt–Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt–Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt–Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt–Au/C catalysts, (3:1) Pt–Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt–Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0.6 V with (3:1) Pt–Au/C cathode delivers a maximum power-density of 0.65 W/cm2 in relation to 0.53 W/cm2 delivered by the PEFC with pristine carbon-supported Pt cathode.

    • A novel multi-walled carbon nanotube (MWNT)-based nanocomposite for PEFC electrodes

      S Mohanapriya K K Tintula S D Bhat S Pitchumani P Sridhar

      More Details Abstract Fulltext PDF

      A novel nanocomposite comprising MWNTs and mixed-conducting polymeric components (electronic and ionic) is prepared, characterized and investigated as a support for platinum (Pt). Nanocomposite of MWNTs and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) is prepared by in situ polymerization and characterized using Fourier–Transform infrared spectroscopy (FT–IR), thermogravimetric analysis (TGA) in conjunction with scanning electron microscopy (SEM). Atomic force microscopy (AFM) studies are also carried out to characterize the surface topography of MWNTs/PEDOT–PSS nanocomposite. X-ray diffraction (XRD) studies reveal that MWNTs/PEDOT–PSS nanocomposite provides better backbone for the improved dispersion of Pt as evidenced by the reduced Pt crystallite size over MWNTs/PEDOT–PSS nanocomposite compared to MWNTs. Electrochemical characterization studies performed with Pt/nanocomposite and Pt/MWNTs demonstrate the superior catalytic activity of Pt/nanocomposite under reduced Nafion loadings in relation to Pt/MWNTs. It is observed that mixed conducting nanoporous network ofMWNTs/PEDOT–PSS composite structure promotes the catalytic activity of Pt by enhancing catalyst utilization.

    • Pt–Ru decorated self-assembled TiO2–carbon hybrid nanostructure for enhanced methanol electrooxidation

      K G Nishanth P Sridhar S Pitchumani A K Shukla

      More Details Abstract Fulltext PDF

      Porous titanium oxide–carbon hybrid nanostructure (TiO2–C) with a specific surface area of 350 m2/g and an average pore-radius of 21.8 Å is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2–C supported Pt–Ru electro-catalyst (Pt–Ru/TiO2–C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2–C. TEM images reveal uniform distribution of Pt–Ru nanoparticles (𝑑Pt−Ru = 1.5–3.5 nm) on TiO2–C. Methanol oxidation and accelerated durability studies on Pt–Ru/TiO2–C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt–Ru. DMFC employing Pt–Ru/TiO2–C as an anode catalyst delivers a peak-power density of 91 mW/cm2 at 65 °C as compared to the peak-power density of 60 mW/cm2 obtained for the DMFC with carbon-supported Pt–Ru anode catalyst operating under similar conditions.

    • 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

      K Hari Gopi S Gouse Peera S D Bhat P Sridhar S Pitchumani

      More Details Abstract Fulltext PDF

      Hydroxyl ion (OH) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.