• S P Bardakhanov

      Articles written in Bulletin of Materials Science

    • Preparation of copper and silicon/copper powders by a gas evaporation-condensation method

      J Temuujin S P Bardakhanov A V Nomoev V I Zaikovskii A Minjigmaa G Dugersuren A Van Riessen

      More Details Abstract Fulltext PDF

      Pure and silicon-coated metal copper nano to submicron-sized powders were prepared by gas evaporation and condensation. This powder was synthesized by using an industrial electron accelerator, ELV-6, with Ar as the carrier gas. Vapour from the liquefied metal surface was transferred to the cold zone by the carrier gas and precipitated as spherical Cu metal and Si/Cu composite powders. The mean diameter of the resulting powder was 100–200 nm.

    • The general mechanisms of Cu cluster formation in the processes of condensation from the gas phase

      I V Chepkasov Yu Ya Gafner S L Gafner S P Bardakhanov

      More Details Abstract Fulltext PDF

      Technological applications of metallic clusters impose very strict requirements for particle size, shape, structure and defect density. Such geometrical characteristics of nanoparticles are mainly determined by the process of their growth. This work represents the basic mechanisms of cluster formation from the gas phase that has been studied on the example of copper. The process of Cu nanoclusters synthesis has been studied by the moleculardynamics method based on tight-binding potentials. It has been shown that depending on the size and temperature of the initial nanoclusters the process of nanoparticle formation can pass through different basic scenarios. The general conditions of different types of particles formation have been defined and clear dependence of the cluster shape from collision temperature of initial conglomerates has been shown. The simulation results demonstrate a very good agreement with the available experimental data. Thus, it has been shown that depending on the specific application of the synthesized particles or in electronics, where particles of a small size with a spherical shape are required, or in catalytic reactions, where the main factor of effectiveness is the maximum surface area with the help of temperature of the system it is possible to get the realization of a certain frequency of this or that scenario of the shape formation of nanocrystalline particles.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.