• S D Bhat

      Articles written in Bulletin of Materials Science

    • A novel multi-walled carbon nanotube (MWNT)-based nanocomposite for PEFC electrodes

      S Mohanapriya K K Tintula S D Bhat S Pitchumani P Sridhar

      More Details Abstract Fulltext PDF

      A novel nanocomposite comprising MWNTs and mixed-conducting polymeric components (electronic and ionic) is prepared, characterized and investigated as a support for platinum (Pt). Nanocomposite of MWNTs and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) is prepared by in situ polymerization and characterized using Fourier–Transform infrared spectroscopy (FT–IR), thermogravimetric analysis (TGA) in conjunction with scanning electron microscopy (SEM). Atomic force microscopy (AFM) studies are also carried out to characterize the surface topography of MWNTs/PEDOT–PSS nanocomposite. X-ray diffraction (XRD) studies reveal that MWNTs/PEDOT–PSS nanocomposite provides better backbone for the improved dispersion of Pt as evidenced by the reduced Pt crystallite size over MWNTs/PEDOT–PSS nanocomposite compared to MWNTs. Electrochemical characterization studies performed with Pt/nanocomposite and Pt/MWNTs demonstrate the superior catalytic activity of Pt/nanocomposite under reduced Nafion loadings in relation to Pt/MWNTs. It is observed that mixed conducting nanoporous network ofMWNTs/PEDOT–PSS composite structure promotes the catalytic activity of Pt by enhancing catalyst utilization.

    • 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

      K Hari Gopi S Gouse Peera S D Bhat P Sridhar S Pitchumani

      More Details Abstract Fulltext PDF

      Hydroxyl ion (OH) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.