• S Basu

      Articles written in Bulletin of Materials Science

    • Current-voltage studies on β-FeSi2/Si heterojunction

      A Datta S Kal S Basu

      More Details Abstract Fulltext PDF

      I-V characteristics of both β-FeSi2/n-Si and β-FeSi2/p-Si were studied at room temperature. The junctions were formed by depositing Fe on Si selectively followed by thermal annealing and some samples were later treated by pulsed laser. Temperature of thermal annealing and diode area were also varied.I-V studies on all these samples were done and ideality factors were computed. Results obtained were interpreted.

    • Foreword

      S Basu P Bhargava

      More Details Abstract Fulltext PDF
    • Improved zinc oxide film for gas sensor applications

      S Roy S Basu

      More Details Abstract Fulltext PDF

      Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor applications. Good quality ZnO films were deposited on glass and quartz substrates by a novel CVD technique using zinc acetate as the starting solution. X-ray diffraction confirmed the crystallinity of the zinc oxide film and SEM study revealed uniform deposition of fine grains. Undoped ZnO films were used for detection of dimethylamine (DMA) and H2 at different temperatures by recording the change in resistivity of the film in presence of the test gases. The response was faster and the sensitivity was higher compared to the earlier reported ZnO based sensors developed in our laboratory. The main objective of this work was to study the selectivity of the ZnO film for a particular gas in presence of the others. The operating temperature was found to play a key role in the selectivity of such sensors.

    • New semiconductor materials for magnetoelectronics at room temperature

      S K Kamilla S Basu

      More Details Abstract Fulltext PDF

      Most of the semiconductor materials are diamagnetic by nature and therefore cannot take active part in the operation of the magneto electronic devices. In order to enable them to be useful for such devices a recent effort has been made to develop diluted magnetic semiconductors (DMS) in which small quantity of magnetic ion is introduced into normal semiconductors. The first known such DMS are II–VI and III–V semiconductors diluted with magnetic ions like Mn, Fe, Co, Ni, etc. Most of these DMS exhibit very high electron and hole mobility and thus useful for high speed electronic devices. The recent DMS materials reported are (CdMn)Te, (GaMn)As, (GaMn)Sb, ZnMn(or Co)O, TiMn(or Co)O etc. They have been produced as thin films by MBE and other methods. This paper will discuss the details of the growth and properties of the DMS materials and some of their applications.

    • Synthesis of SiC from rice husk in a plasma reactor

      S K Singh B C Mohanty S Basu

      More Details Abstract Fulltext PDF

      A new route for production of SiC from rice husk is reported by employing thermal plasma technique. The formation of 𝛽-SiC is observed in a short time of 5 min. The samples are characterized by XRD and SEM.

    • Influence of quench rates on the properties of rapidly solidified FeNbCuSiB alloy

      A K Panda I Chattoraj S Basu A Mitra

      More Details Abstract Fulltext PDF

      FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more amorphous structure exhibiting superior soft magnetic properties with improved corrosion resistance.

    • Synthesis of nanocomposites using glasses and mica as templates

      D Chakravorty S Basu B N Pal P K Mukherjee B Ghosh K Chatterjee A Bose S Bhattacharya A Banerjee

      More Details Abstract Fulltext PDF

      Various nanocomposites were synthesized using either a silica-based glass or mica crystallites as the medium. In some cases by an oxidation or a sulfidation treatment a core-shell nanostructure could be generated. Iron–iron oxide core-shell structured nanocomposites exhibited excellent humidity sensing behaviour. Gold–gold sulfide core-shell nanorods exhibited a number of optical absorption peaks which arose because of their structural characteristics. Nanoparticles of silver and silver oxide could be aligned in a polymethylmethacrylate film by an a.c. electric field of 1 MHz frequency. The composites showed large sensitivity to relative humidity. Lead sulfide nanowires of diameter, 1.2 nm, were grown within the nanochannels of Na-4 mica. These exhibited a semiconductor to metal transition at around 300 K. This arose because of high pressure generated on the nanowires. Copper sulfide nanowires grown within the Na-4 mica channels showed metallic behaviour. Silver core–silver orthosilicate shell nanostructures developed within a silicate glass medium showed discontinuous changes in resistivity at some specific temperatures. This was explained as arising due to excitation of Lamb modes at certain pressures generated because of thermal expansion mismatch of the core and the shell phases. Optical properties of iron core–iron oxide shell nanocomposites when analysed by effective medium theory led to the result of a metal non-metal transition for particle diameters below a critical value. Similar results were obtained from optical absorption data of silver nanoparticles grown in a tetrapeptide solution.

    • XPS study of palladium sensitized nano porous silicon thin film

      J Kanungo L Selegård C Vahlberg K Uvdal H Saha S Basu

      More Details Abstract Fulltext PDF

      Nano porous silicon (PS) was formed on 𝑝-type monocrystalline silicon of 2–5 𝛺 cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its nano structure, is responsible for the uncontrolled oxidation in air and for the deterioration of the PS surface with time. To stabilize the material PS surface was modified by a simple and low cost chemical method using PdCl2 solution at room temperature. X-ray photoelectron spectroscopy (XPS) was performed to reveal the chemical composition and the relative concentration of palladium on the nanoporous silicon thin films. An increase of SiO2 formation was observed after PdCl2 treatment and presence of palladium was also detected on the modified surface. 𝐼–𝑉 characteristics of Al/PS junction were studied using two lateral Al contacts and a linear relationship was obtained for Pd modified PS surface. Stability of the contact was studied for a time period of around 30 days and no significant ageing effect could be observed.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.