• S Annapoorni

      Articles written in Bulletin of Materials Science

    • Phase change induced by polypyrrole in iron-oxide polypyrrole nanocomposite

      Komilla Suri S Annapoorni R P Tandon

      More Details Abstract Fulltext PDF

      Nanocomposites of polypyrrole and iron oxide were prepared using simultaneous gelation and polymerization processes. Varied amounts of pyrrole monomer were added to a solution containing iron nitrate as precursor and 2-methoxy ethanol as solvent. The presence of oxide and polypyrrole was confirmed by using X-ray and FTIR techniques. Some of these nanocomposites exhibited magnetic behaviour. SEM studies of powders indicated presence of nanosized particles. Electrical conductivity studies of powders showed a slight variation in conductivity for lower concentration of pyrrole, with a sudden increase in conductivity at 15% of pyrrole concentration. A transition from a nonmagnetic to magnetic phase was also observed at the same concentration.

    • Metal oxide/polyaniline nanocomposites: Cluster size and composition dependent structural and magnetic properties

      Raksha Sharma Rakesh Malik Subhalakshmi Lamba S Annapoorni

      More Details Abstract Fulltext PDF

      Nanocomposites of iron oxide with conducting polymer in the form of powders of varying compositions have been studied to understand the effects of particle size, cluster size and magnetic inter-particle interactions. The sizes of the nanoparticles were estimated to be ∼ 10–20 nm from the X-ray diffraction (XRD) and the transmission electron micrographs (TEM). XRD shows a single crystalline phase for the 𝛾-Fe2O3. The presence of conducting polymer was confirmed through Fourier transform infrared (FTIR) spectroscopy. The amount of polymer present in the composite, the transition temperature of iron oxide and the thermal stability of polymer was determined through thermogravimetric and differential thermal analysis (TGA–DTA). The room temperature magnetic hysteresis measurements show reduction in saturation magnetization with increasing polymer concentrations. A low value of coercivity was observed for low polymer composites. On increasing the polymer concentration, the coercivity and remanence become negligible indicating a superparamagnetic phase at room temperature. Beyond a certain composition, the system shows paramagnetic behaviour which is also confirmed through zero field cooled–field cooled (ZFC–FC) measurements. We also report preliminary results on the magnetic properties of self standing sheets prepared using 𝛾-Fe2O3 and NiFe2O4 nanoparticles and conducting polymers.

    • Impact of interfacial interactions on optical and ammonia sensing in zinc oxide/polyaniline structures

      Mansi Dhingra Lalit Kumar Sadhna Shrivastava P Senthil Kumar S Annapoorni

      More Details Abstract Fulltext PDF

      Zinc oxide/polyaniline (ZnO/PANI) hybrid structures have been investigated for their optical and gas sensing properties. ZnO nanoparticles, prepared by the sol–gel method, pressed in the form of pellets were used for gas sensing. The hybrid ZnO/PANI structure was obtained by the addition of PANI on the surface of ZnO. The UV–Vis absorption of the modified pellets show band edge at 363 nm corresponding to ZnO, while a change in the absorption peaks for PANI was observed. The possible interaction between Zn2+ of ZnO and NH-group of PANI was confirmed using Raman spectroscopy studies. The results reveal that the hybrid structures exhibit much higher sensitivity to NH3 gas at room temperature than blank ZnO, which is sensitive to NH3 gas at higher temperature. This enhancement has been attributed to the creation of active sites on the ZnO surface due to the presence of PANI.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.