• S A R Hashmi

      Articles written in Bulletin of Materials Science

    • Role of PET in improving wear properties of PP in dry sliding condition

      Somit Neogi S A R Hashmi Navin Chand

      More Details Abstract Fulltext PDF

      The sliding wear of isotactic polypropylene (PP), polyethylene terephthalate (PET) and their blends was evaluated as a function of applied pressure and composition against a stainless steel counter face in dry condition. Wear rate decreases with the addition of PET in the blend. The wear was observed in two stages, the moderate wear and high wear while increasing the applied pressure on test samples. The addition of PET in PP helps in increasing the limit of moderate wear towards the high-pressure side. Microstructure and worn surfaces of samples were observed by scanning electron microscope. The wear phenomenon has been discussed based on wear losses and worn surfaces.

    • Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE

      Takeshi Kitano S A R Hashmi Navin Chand

      More Details Abstract Fulltext PDF

      An experimental study was conducted to observe the effects of parallel-superposed flow condition on viscoelastic properties of LLDPE, Kevlar fibre reinforced LLDPE and hybrid of short glass fibre and Kevlar fibre reinforced LLDPE. Parallel-plate rheometer was employed for these tests. Rheological parameters such as loss modulus (𝐺″) and dynamic viscosity (𝜂′) do not vary significantly on superposing steady state shear with oscillatory shear in the studied range of experiment at 185°C in un-reinforced LLDPE. Kevlar fibre reinforced LLDPE and Kevlar/glass fibre reinforced LLDPE showed significant changes in the flow behaviour under various sets of superposed conditions. Storage modulus (𝐺′), and 𝐺″ become highly sensitive to low oscillatory angular frequencies (𝜔) under superposed conditions. These curves show two different regions with increased 𝜔 value. At low 𝜔 values, parameters 𝐺′ and 𝐺″ change sharply reaching a certain value, thereafter, changes are moderate with increased 𝜔. In case of 𝜂′ a maxima is observed, position of which, depends upon the value of steady shear rate. Maxima shifts towards higher frequencies with the increased steady shear rate.

    • Effects of hybrid composition of LCP and glass fibres on abrasive wear of reinforced LLDPE

      S A R Hashmi Ajay Naik Navin Chand

      More Details Abstract Fulltext PDF

      The hybrid of liquid crystalline polymer (LCP) fibres and glass fibres (GF) provide a combination of modulus and toughness to semi-crystalline linear-low-density-polyethylene (LLDPE). LCP and GF fibres reinforced composites were studied using two-body abrasion tester under different applied loads. Two sets of fibre reinforced LLDPE, 10 and 20 vol%, were investigated. The contents of LCP and glass fibres were varied as 25, 50, 75 and 100 vol% of overall volume of fibres in LLDPE. The effect of replacing glass fibre with LCP fibre on wear is reported. Wear loss increased with the applied loads and glass fibre contents in LLDPE. The replacements of glass fibres with LCP fibres improved abrasive wear resistance of composite. The composite containing 20 vol% of glass fibres in LLDPE showed the specific wear rate nearly double to that of LCP fibre reinforced LLDPE. Incorporation of LCP fibre improved wear resistance of glass fibre reinforced LLDPE. Worn surfaces were studied using SEM. Glass fibres were broken in small debris and removed easily whereas LCP fibres yielded to fibrillation during abrasive action. The overall wear rate was governed by the composition and test conditions.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.