• Rucha Desai

      Articles written in Bulletin of Materials Science

    • Bulk magnetic properties of CdFe2O4 in nano-regime

      Rucha Desai R V Mehta R V Upadhyay Amita Gupta A Praneet K V Rao

      More Details Abstract Fulltext PDF

      Cadmium ferrite particles have been synthesized using co-precipitation technique followed by a low temperature (600°C) annealing in a time scale much shorter than reported in literature. Incorporation of sodium chloride during annealing helps to form a single phase spinel structure with a final particle size of around 50 nm. Even at such a short length scale we observe the overall magnetic properties to be similar to those of the bulk. The observed magnetic properties can be explained on the basis of an anti-ferromagnetic core with a shell containing ‘ferromagnetic-like’, but canted spin structure.

    • Low temperature synthesis of nanosized Mn1–𝑥Zn𝑥Fe2O4 ferrites and their characterizations

      Rajesh Iyer Rucha Desai R V Upadhyay

      More Details Abstract Fulltext PDF

      Nanosized Mn1–𝑥Zn𝑥Fe2O4 (𝑥 = 0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.9) mixed ferrite samples of particle size < 12 nm were prepared using the co-precipitation technique by doping the Zn2+ ion impurities. Autoclave was employed to maintain constant temperature of 80°C and a constant pressure. The X-ray analysis and the IR spectrum analysis were carried out to confirm the spinel phase formation as well as to ascertain the cation distribution in the ferrite samples. This clearly points to the fact that the Zn2+ ion’s presence is not restricted to A-site alone for some of the Mn–Zn ferrite series. The real part of a.c. susceptibility measurements clearly indicated the superparamagnetic behaviour of the ferrite samples. There is a systematic decrease in the particle size, Curie temperature and magnetization with the increase in the Zn2+ ion doping, measured using magneto thermal gravimetric analysis (MTGA) and vibrating sample magnetometer (VSM), respectively. The lattice constant is found to be constantly decreasing till 𝑥 = 0.6 and beyond this an unusual slight increase in the lattice constant is found.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.