• Renu Pasricha

      Articles written in Bulletin of Materials Science

    • Preparation of nanocrystalline ferroelectric BaNb2O6 by citrate gel method

      S P Gaikwad Violet Samuel Renu Pasricha V Ravi

      More Details Abstract Fulltext PDF

      A gel was formed when a aqueous solution of BaCl2, NbF5 and citric acid in stoichiometric ratio is heated on a water bath. This gel on decomposition at 600°C yielded the nano crystallites of BaNb2O6, as confirmed by X-ray diffraction study (XRD). This is a much lower temperature as compared to that prepared by traditional solid state method (1000°C) as reported for the formation of BaNb2O6. Transmission electron microscopic (TEM) investigations revealed that the average particle size is 50 nm for the calcined powders. The room temperature dielectric constant at 1 kHz is found to be 1000. The ferroelectric hysteresis loop parameters of these samples were also studied.

    • Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates

      Saikat Mandal Sujatha K Arumugam Renu Pasricha Murali Sastry

      More Details Abstract Fulltext PDF

      In this paper, we describe the synthesis of silver nanocrystals within aqueous foams as a template. More specifically, we show that aqueous Ag+ ions may be electrostatically complexed with the anionic surfactants aerosol OT (sodium bis-2-ethylhexyl-sulfosuccinate, (AOT) and sodium dodecyl sulphate (SDS)) in a highly stable liquid foam. After drainage of the foam, the silver ions are reduced in situ by introducing sodium borohydride into the foam by capillary flow. This leads to the formation of silver nanoparticles of spherical, tape- and sheet-like morphology in the foam. The structure of the foam is extremely complex and presents reaction sites of different spatial extent. The differences in foam reaction–site geometry are believed to be responsible for the morphology variation in the silver nanoparticles observed. The silver nanoparticles are observed to be extremely stable in solution suggesting that the AOT or SDS molecules stabilize them. This approach appears promising for application in large-scale synthesis of nanoparticles and may be readily extended to other chemical compositions.

    • New route for preparation of luminescent mercaptoethanoate capped cadmium selenide quantum dots

      Manoj E Wankhede Shaukatali N Inamdar Aparna Deshpande Aniket R Thete Renu Pasricha Sulabha K Kulkarni Santosh K Haram

      More Details Abstract Fulltext PDF

      We report a synthesis of cadmium selenide quantum dots (Q-CdSe) by refluxing a mixture of cadmium acetate, selenium powder, sodium sulfite and 2-mercaptoethanol in N,N′-dimethyl formamide (DMF)/water solution. X-ray and electron diffractions suggest the formation of hexagonal phase of size quantized CdSe. Based on TEM analysis, the formation of nanoparticles with an average diameter of 3.5 ± 0.5 nm is inferred. Their sols in DMF and dimethyl sulphoxide (DMSO) gave characteristic absorption peaks at 300 nm and 327 nm, which is attributed to the formation of high quality, size quantized CdSe particles. Extracted particles from the sol were readily redispersed in DMF and DMSO, which were diluted further with water without losing their optical and colloidal properties. FTIR spectroscopy suggested the formation of 2-mercaptoethanol thiolate on the particle surface, with free –OH groups available for linkage. Sols in DMSO and their solutions in water displayed an intense photoluminescence (PL).

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.