Rajeev Gupta
Articles written in Bulletin of Materials Science
Volume 34 Issue 3 June 2011 pp 447-454
Sonachand Adhikari Rajeev Gupta Ashish Garg Deepak
Indium–gallium–zinc oxide (IGZO) is a novel amorphous oxide semiconductor, which recently has received much attention for thin film transistors (TFTs) in flat panel displays. Published literature reports significant variations in the properties of thin films and TFTs prepared from IGZO even though the reported process conditions are similar.We demonstrate that these differences could arise from the method for preparation of targets from which the films are made. Accordingly, we also propose simple and appropriate conditions, specifically using much lower sintering temperatures and thus avoiding use of sealed Pt tubes for preparation of IGZO targets in composition range, InGaO3(ZnO)m, with 1 ≤ m ≤ 5. These target materials are suitable in physical vapour deposition processes such as pulsed laser deposition and sputtering. In developing the process for sintering, the phase analysis of the target pellets was carried out using X-ray diffraction (XRD). The chemical compositions of the phases are also confirmed with inductively coupled plasma optical emission spectrometry (ICP-OES) and energy dispersive X-ray (EDX) techniques. We also demonstrate successful deposition of amorphous IGZO thin films by pulse laser deposition using the targets prepared by the proposed sintering process. Finally, we demonstrate that unmonitored method of making pellets for films deposition is a cause of variability associated in published literature on IGZO TFTs.
Volume 38 Issue 2 April 2015 pp 525-529
Phase stability of silver particles embedded calcium phosphate bioceramics
Brajendra Singh Samayendra Kumar Naresh Saha Bikramjit Basu Rajeev Gupta
In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite (Ca10(PO4)6(OH)2) on doping with silver. The transformation of hydroxyapatite to (𝛽/𝛼) tricalcium phosphate phases during sintering has been explored using Raman spectroscopy and X-ray diffraction techniques. The optical absorption spectroscopy analysis reveals the presence of Ag+ ions at low doping levels. As the doping increases, abundance of Ag particles is enhanced.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.