R DIVAKAR
Articles written in Bulletin of Materials Science
Volume 20 Issue 4 July 1997 pp 519-523
Studies of interfaces in Al65Cu20Fe15
R Divakar D Sundararaman S Ranganathan
The study of interfaces in quasicrystalline alloys is relatively new. Apart from the change in orientation, symmetry and chemistry which can occur across homophase and heterophase boundaries in crystalline materials, we have the additional, exciting possibility of an interface between quasicrystalline and its rational approximant. High resolution electron microscopy is a powerful technique to study the structural details of such interfaces. We report the results of a HREM study of the interface between the icosahedral phase and the related Al13Fe4 type monoclinic phase in melt spun and annealed Al65Cu20Fe15 alloy.
Volume 45 All articles Published: 18 November 2022 Article ID 0233
High pressure investigations on neutron irradiated ferroboron
ANAND KUMAR UTTYIOARNAB SAHA E RADHA K DEVAN N R SANJAY KUMAR C N VENKITESWARAN R DIVAKAR N V CHANDRA SHEKAR
This study reports the pressure effect on structural stability of neutron irradiated ferroboron systems. Ferroboron, a mixture of boron and iron, has been found to have three phases, i.e., FeB, Fe$_2$B and Fe$_3$B. Studies have been conducted on single-phase Fe$_2$B and ferroboron. Fe$_2$B adopts tetragonal structure at ambient and undergoes structural transition to orthorombhic phase at 6 GPa. Further, Fe2B is irradiated with neutrons with a fluence of ${\sim}$10$^{17}$ n cm$^{–2}$ and yields bulk modulus of 254 GPa, which is 16% enhancement as compared to unirradiated sample. The defects are estimated by the use of SRIM code. Total displacement per atom (dpa) in Fe$_2$B for the irradiation fluence is found to be 5.53${\times}$10$^{-5}$. The study also shows that phase transition seen in pristine Fe$_2$B is inhibited upon neutron irradiation under pressure up to 24 GPa. Similar result was obtained on ferroboron mixture, irradiated with a neutron fluence of 8.18${\times}$10$^{21}$ n cm$^{-2}$ with dpa of 2.8. The irradiated sample is found to be stable up to 16 GPa.
Volume 46 All articles Published: 28 February 2023 Article ID 0041 CORRECTION
Correction to ‘High pressure investigations on neutron irradiated ferroboron’
ANAND KUMAR UTTIYOARNAB SAHA E RADHA K DEVAN N R SANJAY KUMAR C N VENKITESWARAN R DIVAKAR N V CHANDRA SHEKAR
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.