• R Akila

      Articles written in Bulletin of Materials Science

    • Concept of thermodynamic capacity

      R Akila K T Jacob A K Shukla

      More Details Abstract Fulltext PDF

      The thermodynamic capacity of a species (Ci)in a homogeneous phase is defined as (∂ni/∂µiP, T, njwhereniis the total number of moles ofi per unit quantity of the system irrespective of the actual system chemistry andµiis its chemical potential. Based on this definition, the thermodynamic capacity of oxygen in non-reactive and reactive gas mixtures and in binary and ternary liquid solutions has been computed. For reactive gas mixtures containing stable chemical species which do not undergo significant dissociation such as CO + CO2, H2 + H2O and H2 + CO2, the capacity curves show a maximum at equimolar ratio and a minimum at higher oxygen potentials. If one of the chemical species partly dissociates as in the case of H2S in H2 + H2S mixtures or SO3 in SO2 + SO3 mixtures, capacity curves do not exhibit such maxima and minima, especially at high temperatures. It would be difficult to produce stable oxygen fugacities when the capacity has a low value, for example at compositions near the minimum. Oxygen capacities of non-ideal liquid solutions, Cu-O and Cu-O-Sn, and heterogeneous systems formed at saturation with the respective oxides are discussed.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.