• RAZIEH RAZAVI

      Articles written in Bulletin of Materials Science

    • Sn-adopted fullerene (C$_{60}$) nanocage as acceptable catalyst for silicon monoxide oxidation

      RAZIEH RAZAVI SEYYED MILAD ABRISHAMIFAR MOHAMMAD REZA REZAEI KAHKHA ARASH VOJOOD MEYSAM NAJAFI

      More Details Abstract Fulltext PDF

      In recent years, the discovery of metal catalysts for the oxidation of silicon monoxide (SiO) has become extremely important. In first step, the Sn adoption of fullerene (C$_{60}$) was investigated and then activation of surface ofSn-C$_{60}$ via O$_2$ molecule was examined. In second step, the SiO oxidation on surface of Sn-C$_{60}$ via Langmuir Hinshelwood (LH) and Eley Rideal (ER) mechanisms was investigated. Results show that O$_2$-Sn-C$_{60}$ can oxidize the SiO molecule via Sn-C$_{60}$-O-O$^∗$ $+$ SiO $\to$ Sn-C$_{60}$-O-O$^∗$-SiO $\to$ Sn-C$_{60}$-O$^∗$ $+$ SiO$_2$ and Sn-C$_{60}$-O$^∗$ $+$ SiO $\to$ Sn-C$_{60}$ $+$ SiO$_2$ reactions.Results show that SiO oxidation via the LH mechanism has lower energy barrier than ER mechanism. Finally, Sn-C$_{60}$ is an acceptable catalyst with high performance for SiO oxidation in normal temperature.

    • C$_{32}$, Si$_{32}$ and B$_{16}$N$_{16}$ as anode electrodes of Li-, Na- and K-ion batteries: theoretical examination

      RAZIEH RAZAVI BEHNAM NASROLLAHZADEH SYED ABOLGHASEM MIRHOSSEINEI MILAD JANGHORBAN LARICHE MEYSAM NAJAFI

      More Details Abstract Fulltext PDF

      In this study, the potential of C$_{32}$, Si$_{32}$ and B$_{16}$N$_{16}$ nanocages as anode electrodes of Li-,Na- andK-ion batteries via density functional theory was investigated. The effects of halogen-adoption of C$_{32}$, Si$_{32}$ and B$_{16}$N$_{16}$ on potentials of metal-ion batteries were examined. Results showed that B$_{16}$N$_{16}$ as an anode electrode in metal-ion batteries has higher potential than C$_{32}$ and Si$_{32}$. Results illustrated that (i) a K-ion battery has higher cell voltage and higher performance than Li- and Na-ion batteries; (ii) halogen-adoption of nanocages increased the cell voltage of studied metal-ion batteries and (iii) F-adopted metal-ion batteries have higher cell voltage than Cl- and Br-adopted metal-ion batteries. Finally, F–B$_{15}$N$_{16}$ as an anode electrode in K-ion batteries has the highest performance and it can be proposed as novel metal-ion batteries.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.