R S Khairnar
Articles written in Bulletin of Materials Science
Volume 27 Issue 1 February 2004 pp 73-77 Optical Materials
Fabrication of silicon based glass fibres for optical communication
Silicon based glass fibres are fabricated by conventional fibre drawing process. First, preform fabrication is carried out by means of conventional MCVD technique by using various dopants such as SiCl4, GeCl4, POCl3, and FeCl3. The chemicals are used in such a way that step index single mode fibre can be drawn. The fibre drawing process consists of various steps such as heating the preform at elevated temperature, diameter monitor, primary and secondary coating, and ultra violet radiation curing. The fibres are then characterized for their geometrical and optical properties. The drawn fibre has diameter of core and cladding to be 8.3 𝜇m and 124.31 𝜇m, respectively whereas non-circularity is found to be 4.17% for core and 0.26% for cladding as seen from phase plot. Mode field diameter is found to be 8.9 𝜇m and 9.2 𝜇m using Peterman II and Gaussian method, respectively. The fabricated fibres showed the signal attenuation of 0.35 dB/km and 0.20 dB/km for 1310 nm and 1550 nm, respectively as measured by the optical time domain reflectometer (OTDR).
Volume 28 Issue 6 October 2005 pp 535-545 Synthesis
Synthesis, characterization and gas sensing property of hydroxyapatite ceramic
M P Mahabole R C Aiyer C V Ramakrishna B Sreedhar R S Khairnar
Hydroxyapatite (HAp) biomaterial ceramic was synthesized by three different processing routes viz. wet chemical process, microwave irradiation process, and hydrothermal technique. The synthesized ceramic powders were characterized by SEM, XRD, FTIR and XPS techniques. The dielectric measurements were carried out as a function of frequency at room temperature and the preliminary study on CO gas sensing property of hydroxyapatite was investigated. The XRD pattern of the hydroxyapatite biomaterial revealed that hydroxyapatite ceramic has hexagonal structure. The average crystallite size was found to be in the range 31–54 nm. Absorption bands corresponding to phosphate and hydroxyl functional groups, which are characteristic of hydroxyapatite, were confirmed by FTIR. The dielectric constant was found to vary in the range 9–13 at room temperature. Hydroxyapatite can be used as CO gas sensor at an optimum temperature near 125°C. X-ray photoelectron spectroscopic studies showed the Ca/P ratio of 1.63 for the HAp sample prepared by chemical process. The microwave irradiation technique yielded calcium rich HAp whereas calcium deficient HAp was obtained by hydrothermal method.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.