• R G Baligidad

      Articles written in Bulletin of Materials Science

    • Effect of cerium addition on microstructures of carbon-alloyed iron aluminides

      S Sriram R Balasubramaniam M N Mungole S Bharagava R G Baligidad

      More Details Abstract Fulltext PDF

      The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe–18.5Al–3.6C, Fe–20.0Al–2.0C and Fe–19.2Al–3.3C–0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.

    • Effect of cerium and thermomechanical processing on microstructure and mechanical properties of Fe–10.5Al–0.8C alloy

      R G Baligidad Shivkumar Khaple

      More Details Abstract Fulltext PDF

      The effect of cerium content and thermomechanical processing on structure and properties of Fe–10.5 wt.%Al–0.8 wt%C alloy has been investigated. Alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot-forged and hotrolled at 1373 K as well as warm-rolled at 923 K and heat-treated. Hot-rolled, warm-rolled and heat treated alloys were examined using optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction to understand the microstructure of these alloys. The ternary, Fe–10.5 wt.%Al–0.8 wt.%C alloy showed the presence of two phases; Fe–Al with bcc structure, and large volume fraction of Fe3AlC0.5 precipitates. Addition of cerium to Fe–10.5 wt.%Al–0.8 wt.%C alloy resulted in three phases, the additional phase being small volume fraction of fine cerium oxy-carbide precipitates. Improvement in tensile elongation from 3–6.4% was achieved by increasing the cerium content from 0.01–0.2 wt.% and further improvement in tensile elongation from 6.4–10% was achieved by warm-rolling and heat treatment.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.