Articles written in Bulletin of Materials Science

    • Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity


      More Details Abstract Fulltext PDF

      A comparative study of chemically (ZnO) and biologically synthesized (nano-ZnO) nanoparticles were carried out to determine the effect on seed germination of $Sesamum indicum$ (Co-1) by soaking method. Nano-ZnO is synthesized using $Lantana aculeata$ aqueous extract. Chemical synthesis of ZnO nanoparticles by precipitate method and was characterized by ultraviolet–Visible spectroscopy (UV–Vis), Fourier transform infrared spectrometer(FT-IR), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Antibacterial activity against pathogens was determined using well diffusion method. All the characterization analysis revealed that ZnO and nano-ZnO nanoparticles were spherical in shape with an average particle size of $18 \pm 2$ and $12\pm 3$ nm, respectively.Antibacterial studies conclude that nano-ZnO NPs have maximum zone of inhibition which was observed in $Pseudomonas aeruginosa$ ($15.60 \pm 1.0$ mm) at 100 $\mu$g ml$^{−1}$ concentration when compared to other ZnO NPs. Phytomediate ZnO have no adverse effects on seed germination, root elongation on $S. indicum$. But chemically synthesized ZnO nanoparticles significantly decreased in germination of $S. indicum$-treated samples and no changes were observed in bulk ZnO. These results clearly indicate the benefits of using bio-fabricate ZnO nanoparticles, i.e., more efficient in germination of $S. indicum$ and can also act as antibacterial agent. It can be used as nanofertilizer in environmental aspect of agricultural development.

    • Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens


      More Details Abstract Fulltext PDF

      In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles from an aquatic noxious weed, Eichhornia crassipes by green chemistry approach. The aim of this work is to synthesize copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available techniques. The synthesized copper oxide nanoparticles were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDX) analyses. The synthesized particles were highly stable, spherical in shape with an average diameter of $28\pm 4$ nm. The synthesized nanoparticles were then explored to antifungal activity against plant pathogens. Highest zone of inhibition were observed in 100 $\mu$g ml$^{−1}$ of Eichhornia-mediated copper oxide nanoparticle against Fusarium culmorum and Aspergillus niger. This Eichhornia-mediated copper oxide nanoparticles wereproved to be good antifungal agents against plant fungal pathogens.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.