• PRAKASH SHETTY

      Articles written in Bulletin of Materials Science

    • Synthesis and nonlinear optical characterization of new 1,3,4-oxadiazoles

      B Chandrakantha Arun M Isloor Reji Philip M Mohesh Prakash Shetty A M Vijesh

      More Details Abstract Fulltext PDF

      A new series of 1,3,4-oxadiazole derivatives containing 2-fluoro-4-methoxy phenyl were synthesized by refluxing mixture of acid hydrazide 3 with different aromatic carboxylic acids (a–e) in phosphorous oxychloride. These newly synthesized compounds were characterized by NMR, mass spectral, and IR spectral studies, and also by C, H, N analyses. The open-aperture z-scan experiment was employed to measure the optical nonlinearity of the samples at 532 nm, using 5 ns laser pulses. The measurements indicate that compound 4a, which contains Bromine, behaves as an optical limiter at this wavelength, with potential applications in optoelectronics.

    • Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium

      P PREETHI KUMARI PRAKASH SHETTY SUMA A RAO DHANYA SUNIL T VISHWANATH

      More Details Abstract Fulltext PDF

      A novel corrosion inhibitor, namely $N'$-[(4-methyl-1$H$-imidazole-5-yl)methylidene]-2-(naphthalen-2-yloxy) acetohydrazide (IMNH), has been synthesized and characterized by ${}^1$H NMR and FTIR spectroscopic techniques. The anticorrosion behaviour of IMNH on mild steel in 1M hydrochloric acid (HCl) medium was studied by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. The percentage inhibition efficiency of IMNH increased with increase in its concentration and temperature. The adsorption of IMNH followed chemisorption andobeyed Langmuir’s adsorption isotherm. PDP study revealed that IMNH functioned as a mixed type inhibitor. Theoretical study of the adsorption behaviour of this inhibitor was carried out by quantum chemical calculations using density functional theory (DFT). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDX) studies confirmed the formation of a protective film of IMNH on the mild steel surface.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.