• P S Mishra

      Articles written in Bulletin of Materials Science

    • Effect of carbon on corrosion resistance of powder-processed Fe–0.35%P alloys

      Yashwant Mehta Shefali Trivedi K Chandra P S Mishra

      More Details Abstract Fulltext PDF

      The corrosion behaviour of phosphoric irons containing 0.35 wt % P, 2% copper, 2% nickel, 1% silicon, 0.5% molybdenum, with/without 0.15% carbon prepared by powder forging route were studied in different environments. The various environments chosen were acidic (0.25 M H2SO4 solution of pH 0.6), neutral/marine (3.5% NaCl solution of pH 6.8) and alkaline (0.5 M Na2CO3 + 1.0 M NaHCO3 solution of pH 9.4). The corrosion studies were conducted using Tafel extrapolation and linear polarization methods. The studies also compare Armco iron with phosphoric irons. It was observed that the addition of carbon improved the corrosion resistance of a Fe–0.35%P–2%Ni–2%Cu–1%Si–0.5%Mo alloy in all the environments. Corrosion rates were highest in acid medium, minimal in alkaline medium and low in neutral solution. SEM/EDAX was used to characterize the compositions.

    • Effect of carbon on mechanical properties of powder-processed Fe–0.35%P alloys

      Shefali Trivedi Yashwant Mehta K Chandra P S Mishra

      More Details Abstract Fulltext PDF

      The present paper records the results of mechanical tests on iron-phosphorus powder alloys which were made using a hot powder forging technique. In this process mild steel encapsulated powders were hot forged into slabs, hot rolled and annealed to relieve the residual stresses. These alloys were characterized in terms of microstructure, porosity content/densification, hardness and tensile properties. Densification as high as 98.9% of theoretical density, has been realized. Microstructures of these alloys consist of single-phase ferrite only. Alloys containing 0.35 wt% P, such as Fe–0.35P–2Cu–2Ni–1Si–0.5Mo and Fe–0.35P–2Cu–2Ni–1Si–0.5Mo–0.15C show very high strength. It was observed in this present investigation that, the alloying additions, such as Si, Mo, Ni, and C to Fe–P based alloys caused increase in strength along with reduction in ductility. Cu reduces porosity of Fe–P alloys. Alloys developed in the present investigation were capable of hot working to very thin gauge of sheets and wires.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.