P K Ajikumar
Articles written in Bulletin of Materials Science
Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation
Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research
M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj
Thermal analysis is a widely used analytical technique for materials research. However, thermal analysis with simultaneous evolved gas analysis describes the thermal event more precisely and completely. Among various gas analytical techniques, mass spectrometry has many advantages. Hence, an ultra high vacuum (UHV) compatible mass spectrometry based evolved gas analysis (EGA–MS) system has been developed. This system consists of a measurement chamber housing a mass spectrometer, spinning rotor gauge and vacuum gauges coupled to a high vacuum, high temperature reaction chamber. A commercial thermogravimetric analyser (TGA: TG + DTA) is interfaced to it. Additional mass flow based gas/vapour delivery system and calibration gas inlets have been added to make it a versatile TGA–EGA–MS facility. This system which gives complete information on weight change, heat change, nature and content of evolved gases is being used for
temperature programmed decomposition (TPD),
synthesis of nanocrystalline materials,
gas–solid interactions and
analysis of gas mixtures.
The TPD of various inorganic oxyanion solids are studied and reaction intermediates/products are analysed off-line. The dynamic operating conditions are found to yield nanocrystalline products in many cases. This paper essentially describes design features involved in coupling the existing EGA–MS system to TGA, associated fluid handling systems, the system calibration procedures and results on temperature programmed decomposition. In addition, synthesis of a few nanocrystalline oxides by vacuum thermal decomposition, gas analysis and potential use of this facility as controlled atmosphere exposure facility for studying gas–solid interactions are also described.
Volume 34 Issue 7 December 2011 pp 1633-1637
G V Kunte Ujwala Ail P K Ajikumar A K Tyagi S A Shivashankar A M Umarji
A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure–temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.