• P J Singh

      Articles written in Bulletin of Materials Science

    • Dielectric measurements on PWB materials at microwave frequencies

      A Tanwar K K Gupta P J Singh Y K Vijay

      More Details Abstract Fulltext PDF

      In quest of finding new substrate for printed wiring board (PWB) having low dielectric constant, we have made PSF/PMMA blends and evaluated the dielectric parameters at 8.92 GHz frequency and at 35°C temperature. Incorporating PMMA in PSF matrix results in reduced dielectric constant than that of pure PSF. The dielectric parameters of pure PMMA and PSF films of different thicknesses have also been obtained at microwave frequencies. We have used dielectric data at microwave frequencies as a tool to evaluate optical constants, absorption index `𝐾’ and refractive index `𝑛’. The blends of PSF/PMMA may be used as base materials for PWBs.

    • Dielectric parameters and a.c. conductivity of pure and doped poly (methyl methacrylate) films at microwave frequencies

      Anju Tanwar K K Gupta P J Singh Y K Vijay

      More Details Abstract Fulltext PDF

      Dielectric properties of pure and doped poly (methyl methacrylate) (PMMA) films at microwave frequency, 8.92 GHz, have been studied at 35°C. Iodine, benzoic acid and FeCl3 have been used as dopants. The losses in doped films are found to be larger than in pure PMMA films. The increased losses account for increased a.c. conductivity in doped films. The increase in conductivity is accounted due to creation of additional hopping sites for the charge carriers in doped samples. The dielectric data has also been used to evaluate optical constants, absorption index (𝐾) and refractive index (𝑛) of the films.

    • Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films

      A Rawat H K Mahavar A Tanwar P J Singh

      More Details Abstract Fulltext PDF

      Electrical properties of polyvinylpyrrolidone, polyacrylamide and their blend thin films have been investigated as a function of temperature and frequency. The films were prepared using solution casting method and the measurements on films were carried out at different temperatures ranging from 305 to 345 K covering a frequency range from 102 to 105 Hz. The conductivity of film samples was found to increase upon increasing the temperature. Lowering of activation energy by increasing the polyvinylpyrrolidone percentage may be due to the predominance of ion conduction mechanism caused by polyvinylpyrrolidone in the blend. The permittivity (𝜖r) and dielectric loss (𝜖i) were found to decrease upon increasing frequency. Temperature and frequency dependence of impedance, relaxation time and electric modulus of thin film samples have also been studied. From electric modulus formalism, polarization and conduction relaxation behaviour in the film samples have been discussed.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.