P Barat
Articles written in Bulletin of Materials Science
Volume 27 Issue 5 October 2004 pp 429-432 Superconductors
Phase formation of superconducting MgB2 at ambient pressure
A Talapatra S K Bandyopadhyay Pintu Sen A Sarkar P Barat
MgB2 superconductor has been synthesized using a simple technique at ambient pressure. The synthesis was carried out in helium atmosphere over a wide range of temperatures. Magnesium was employed in excess to the stoichiometry to prevent the decomposition of MgB2. Samples of MgB2 thus prepared have been almost free from MgO as compared to other methods. Resistivities of the samples are quite low with residual resistivity ratio (RRR) of around 3. 𝑇c (𝑅 = 0) is 38.2–38.5 K with 𝛥𝑇c of 0.6–1.0 K. Comparative studies of various methods of low pressure synthesis have been presented.
Volume 30 Issue 1 February 2007 pp 69-71 Steel
Effect of transient change in strain rate on plastic flow behaviour of low carbon steel
A Ray P Barat P Mukherjee A Sarkar S K Bandyopadhyay
Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.
Volume 34 Issue 3 June 2011 pp 507-513
P S Chowdhury P Mukherjee N Gayathri M Bhattacharya A Chatterjee P Barat P M G Nambissan
Zr–1Nb samples were irradiated with 116 MeV O5+ ions at different doses ranging from 5 × 1017 to 8 × 1018 O5+/m2. X-ray diffraction line profile analysis was performed to characterize the microstructural parameters of these samples. Average domain size, microstrain and dislocation density were estimated as a function of dose. An anomaly was observed in the values of these parameters at a dose of 2 × 1018 O5+/m2. Positron annihilation spectroscopy was used to determine the existence and nature of vacancy clusters in the samples. Isochronal annealing was carried out for a sample to study the evolution of defect clusters.
Volume 34 Issue 5 August 2011 pp 1113-1117
On statistical behaviour of stress drops in Portevin–Le Chatelier effect
A Chatterjee P Mukherjee N Gayathri P Barat Arnab Barat A Sarkar
The Portevin–Le Chatelier (PLC) effect is a kind of plastic instability observed in many dilute alloys when deformed at certain ranges of strain rate and temperature. In this paper we present a comprehensive statistical analysis of the observed experimental data obtained during PLC effect and establish that the occurrence probability of the stress drops in the dynamical process responsible for PLC effect is Poisson in nature.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.