P A Mini
Articles written in Bulletin of Materials Science
Volume 36 Issue 4 August 2013 pp 547-551
T S Sonia P A Mini R Nandhini Kalluri Sujith Balakrishnan Avinash S V Nair K R V Subramanian
In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.
Volume 37 Issue 1 February 2014 pp 61-69
Dona Jacob P A Mini Avinash Balakrishnan S V Nair K R V Subramanian
In this paper, we report on the electrochemical characteristics of graphene–PEDOT composite electrodes. The electrodes were made of indium tin oxide (ITO) substrates by simple processes of electrophoretic deposition of graphene followed by electropolymerization of EDOT monomer. The composite electrode was obtained by electrochemical measurements, a median specific capacitance of 1410 F/g and a median area capacitance of 199 mF cm−2 at a scan rate of 40 mVs−1. The composite showed good stability characteristics after repeated scans in cyclic voltammmetry and fared much better than a thin film of PEDOT. The thermal stability of the composite is also much superior when compared to the polymer with a weight loss temperature of 350° C for the composite and 250° C for the polymer, respectively. The above electrochemical and thermal behaviours of the composite are correlated to the unique morphology of electrodeposited graphene that provides a conductive and high surface area template for electropolymerization.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.