• O V ZUY

      Articles written in Bulletin of Materials Science

    • Removal of Cu(II), Co(II) and Cd(II) from water solutions by layered-double hydroxides with different [Mg(II)]/[Fe(III)] molar ratios

      L N PUZYRNAYA G N PSHINKO V YA ZUB O V ZUY

      More Details Abstract Fulltext PDF

      This work presents a study of sorption of heavy metals (HMs)—Cu(II), Co(II) and Cd(II)—from water media by carbonated and calcined forms of layered-double hydroxides (LDH) with various Mg(II)/Fe(III) molar ratios, whichare obtained by precipitation. It is ascertained that the maximum sorption (99.9%) of the HM ions stated is observed with the use of calcined forms of LDH at pH > 2.8 (pH after sorption $\geq$8.3). Such an increase in the pH of the aqueous suspension causes sorption of the HM ions by the mechanism of their precipitation in the form of hydroxides or hydroxocarbonates (for Cu(II)). Sufficiently high degrees of sorption of HMs, even at low pH of the aqueous medium, are apparently caused not only by the precipitation of their hydroxide forms, but also due to the complex formation with ferrinol groups of brucite sorbent layers. An increase in the Mg/Fe ratio from 2 to 4 and a corresponding decrease in the positive charge of the layers, which determines the size of the interlayer space in the LDH, have virtually no effect on the degree of extraction of HMs. The presented results suggest that the use of the studied-LDH in practice might be promising.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.