• Nandadulal Dandapat

      Articles written in Bulletin of Materials Science

    • Microscopic properties of MPCVD diamond coatings studied by micro-Raman and micro-photoluminescence spectroscopy

      Kalyan S Pal Awadesh K Mallik Nandadulal Dandapat Nihar R Ray Someswar Datta Sandip Bysakh Bichitra K Guha

      More Details Abstract Fulltext PDF

      Diamond coatings were deposited on silicon (100) substrate using the microwave plasma chemical vapour deposition (MPCVD) technique at different process conditions. Process parameters such as CH4–H2 gas mixture concentration, microwave power, chamber pressure and substrate temperature were varied. The diamond coatings were characterized by micro-Raman and micro-photoluminescence (PL) spectroscopy techniques. In this paper we report a comparison of the overall quality of MPCVD polycrystalline diamond coatings grown under different processing conditions in terms of stress distribution, thickness uniformity and surface roughness. Micro-Raman spectroscopy studies over various points on the deposited coating showed that the Raman line widths of diamond peak varied from 3.2 to 18.3 cm−1 with the variation of CH4 and H2 gas concentration. The micro-PL spectra suggested the presence of impurity concentration and defects within the diamond coating synthesized at different processing conditions. Transmission electron microscopy (TEM) images provide the direct evidence of the presence of crystal defects which corroborates the Raman and PL results. The coherence scanning interferometry (CSI) showed that surface roughness of diamond coating varied from 0.43 to 11 𝜇m with thickness at different positions of the three coating samples. It has been concluded that Raman line-width broadening and Raman-shift are due to the presence of crystal defects as well as non-uniform distribution of stresses present in the diamond crystals of the coating, due to the incorporation of Si as impurity element and non-uniform temperature distribution during growth. Defect density gets reduced at higher processing temperatures. It is also being proposed that better thickness uniformity and lower surface roughness can be achieved for coatings deposited at low methane concentration under optimized process conditions.

    • Influence of growth conditions on microstructure and defects in diamond coatings grown by microwave plasma enhanced CVD

      Kalyan Sundar Pal Sandip Bysakh Awadesh Kumar Mallik Nandadulal Dandapat Someswar Datta Bichitra K Guha

      More Details Abstract Fulltext PDF

      Diamond coatings were grown on SiO2/Si substrate under various process conditions by microwave plasma chemical vapour deposition (MPCVD) using CH4/H2 gas mixture. In this paper, we present a microstructural study to elucidate on the growth mechanism and evolution of defects, viz., strain, dislocations, stacking faults, twins and non-diamond impurities in diamond coatings grown under different process conditions. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the diamond coatings. It has been shown that our new approach of prolonged substrate pre-treatment under hydrogen plasma yielded a new growth sequence that the SiO2 layer on the Si substrate was first reduced to yield Si layer of ∼150 nm thickness before diamond was allowed to grow under CH4–H2 plasma, created subsequently. It has also been shown that Si and O as impurity from the substrate hinders the initial diamond growth to yield non-diamond phases. It is being suggested that the crystal defects like twins, stacking faults, dislocations in the diamond grains and dislocations in the intermediate Si layer are generated due to the development of non-uniform stresses during diamond growth at high temperature.

    • Severe wear behaviour of alumina balls sliding against diamond ceramic coatings


      More Details Abstract Fulltext PDF

      At present alumina is themost widely used bio-ceramic material for implants.However, diamond surface offers very good solid lubricant for different machinery, equipment including biomedical implants (hip implants, knee implants, etc.), since the coefficient of friction (COF) of diamond is lower than alumina. In this tribological study, alumina ball was chosen as the counter body material to show better performance of the polycrystalline diamond (PCD) coatings in biomedical load-bearing applications.Wear and friction data were recorded for microwave plasma chemical vapour deposition (MWCVD) grown PCD coatings of four different types, out of which two sampleswere as-deposited coatings, one was chemo-mechanically polished and the other diamond sample was made free standing by wet-chemical etching of the silicon wafer. The coefficient of friction of the MWCVD grown PCD against Al$_2$O$_3$ ball under dry ambient condition was found in the range of 0.29–0.7, but in the presence of simulated body fluid, the COF reduces significantly, in the range of 0.03–0.36. The samples were then characterized by Raman spectroscopy for their quality, by coherence scanning profilometer for surface roughness and by electron microscopy for their microstructural properties. Alumina balls worn out ($14.2 \times 10^{−1}$ mm$^3$) very rapidly with zero wear for diamond ceramic coatings. Since the generation of wear particle is the main problem for load-bearing prosthetic joints, it was concluded that the PCD material can potentially replace existing alumina bio-ceramic for their bettertribological properties.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.