NANDADULAL DANDAPAT
Articles written in Bulletin of Materials Science
Volume 38 Issue 2 April 2015 pp 537-549
Kalyan S Pal Awadesh K Mallik Nandadulal Dandapat Nihar R Ray Someswar Datta Sandip Bysakh Bichitra K Guha
Diamond coatings were deposited on silicon (100) substrate using the microwave plasma chemical vapour deposition (MPCVD) technique at different process conditions. Process parameters such as CH4–H2 gas mixture concentration, microwave power, chamber pressure and substrate temperature were varied. The diamond coatings were characterized by micro-Raman and micro-photoluminescence (PL) spectroscopy techniques. In this paper we report a comparison of the overall quality of MPCVD polycrystalline diamond coatings grown under different processing conditions in terms of stress distribution, thickness uniformity and surface roughness. Micro-Raman spectroscopy studies over various points on the deposited coating showed that the Raman line widths of diamond peak varied from 3.2 to 18.3 cm−1 with the variation of CH4 and H2 gas concentration. The micro-PL spectra suggested the presence of impurity concentration and defects within the diamond coating synthesized at different processing conditions. Transmission electron microscopy (TEM) images provide the direct evidence of the presence of crystal defects which corroborates the Raman and PL results. The coherence scanning interferometry (CSI) showed that surface roughness of diamond coating varied from 0.43 to 11 𝜇m with thickness at different positions of the three coating samples. It has been concluded that Raman line-width broadening and Raman-shift are due to the presence of crystal defects as well as non-uniform distribution of stresses present in the diamond crystals of the coating, due to the incorporation of Si as impurity element and non-uniform temperature distribution during growth. Defect density gets reduced at higher processing temperatures. It is also being proposed that better thickness uniformity and lower surface roughness can be achieved for coatings deposited at low methane concentration under optimized process conditions.
Volume 38 Issue 3 June 2015 pp 717-724
Kalyan Sundar Pal Sandip Bysakh Awadesh Kumar Mallik Nandadulal Dandapat Someswar Datta Bichitra K Guha
Diamond coatings were grown on SiO2/Si substrate under various process conditions by microwave plasma chemical vapour deposition (MPCVD) using CH4/H2 gas mixture. In this paper, we present a microstructural study to elucidate on the growth mechanism and evolution of defects,
Volume 39 Issue 2 April 2016 pp 573-586
Severe wear behaviour of alumina balls sliding against diamond ceramic coatings
ANURADHA JANA NANDADULAL DANDAPAT MITUN DAS VAMSI KRISHNA BALLA SHIRSHENDU CHAKRABORTY RAJNARAYAN SAHA AWADESH KUMAR MALLIK
At present alumina is themost widely used bio-ceramic material for implants.However, diamond surface offers very good solid lubricant for different machinery, equipment including biomedical implants (hip implants, knee implants, etc.), since the coefficient of friction (COF) of diamond is lower than alumina. In this tribological study, alumina ball was chosen as the counter body material to show better performance of the polycrystalline diamond (PCD) coatings in biomedical load-bearing applications.Wear and friction data were recorded for microwave plasma chemical vapour deposition (MWCVD) grown PCD coatings of four different types, out of which two sampleswere as-deposited coatings, one was chemo-mechanically polished and the other diamond sample was made free standing by wet-chemical etching of the silicon wafer. The coefficient of friction of the MWCVD grown PCD against Al$_2$O$_3$ ball under dry ambient condition was found in the range of 0.29–0.7, but in the presence of simulated body fluid, the COF reduces significantly, in the range of 0.03–0.36. The samples were then characterized by Raman spectroscopy for their quality, by coherence scanning profilometer for surface roughness and by electron microscopy for their microstructural properties. Alumina balls worn out ($14.2 \times 10^{−1}$ mm$^3$) very rapidly with zero wear for diamond ceramic coatings. Since the generation of wear particle is the main problem for load-bearing prosthetic joints, it was concluded that the PCD material can potentially replace existing alumina bio-ceramic for their bettertribological properties.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.