• N C Mishra

      Articles written in Bulletin of Materials Science

    • Irradiation induced grain growth and surface emission enhancement of chemically tailored ZnS : Mn/PVOH nanoparticles by Cl+9 ion impact

      D Mohanta S S Nath N C Mishra A Choudhury

      More Details Abstract Fulltext PDF

      Manganese doped zinc sulfide nanoparticles are fabricated on polyvinyl alcohol dielectric matrix. They are bombarded with energetic chlorine ions (100 MeV). The size of the crystallites is found to increase with ion fluence due to melting led grain growth under ion irradiation. The increased size as a result of grain growth has been observed both in the optical absorption spectra in terms of redshift and in electron microscopic images. The photoluminescence (PL) study was carried out by band to band excitation ($\lambda_{ex}$ = 220 nm) upon ZnS : Mn, which results into two emission peaks corresponding to surface states and Mn+2 emission, respectively. The ion fluence for irradiation experiment so chosen were 1 × 1011, 5 × 1011, 5 × 1012 and 1013 Cl/cm2.

    • Swift heavy ion irradiation induced modification of structure and surface morphology of BiFeO3 thin film

      B N Dash P Mallick P Dash R Biswal Jai Prakash A Tripathi D Kanjilal N C Mishra

      More Details Abstract Fulltext PDF

      BiFeO3 (BFO) thin films of thickness about 800 nm deposited on Si (100) substrates by sol–gel spin coating method were irradiated by 200 MeV Ag ions. Modification of structure and surface morphology of the films under irradiation was studied using glancing incidence X-ray diffraction (GIXRD) and atomic force microscope (AFM). Fluence dependence of GIXRD peak intensity indicated formation of 10 nm diameter cylindrical amorphous columns in crystalline BFO due to 200 MeV Ag ion irradiation. AFM analysis indicated that the pristine film consists of agglomerated grains with diffuse grain boundary. Irradiation led to reduced agglomeration of the grains with the formation of sharper grain boundaries. The rms roughness (𝜎rms) estimated from AFM analysis increased from 6.2 in pristine film to 12.7 nm when the film irradiated at a fluence of 1 × 1011 ions cm-2. Further irradiation led to decrease of 𝜎rms which finally saturated at a value of 7–8 nm at high ion fluences. The power spectral density analysis indicated that the evolution of surface morphology of the pristine film is governed by the combined effect of evaporation condensation and volume diffusion processes. Swift heavy ion irradiation seems to increase the dominance of volume diffusion in controlling surface morphology of the film at high ion fluences.

© 2017-2019 Indian Academy of Sciences, Bengaluru.