• Mehdi Salehi

      Articles written in Bulletin of Materials Science

    • Influence of high velocity oxy-fuel parameters on properties of nanostructured TiO2 coatings

      Maryamossadat Bozorgtabar Mehdi Salehi Mohammadreza Rahimipour Mohammadreza Jafarpour

      More Details Abstract Fulltext PDF

      A liquid fuel high velocity oxy-fuel (HVOF) thermal spray process has been used to deposit TiO2 nanostructured coatings utilizing a commercially available nanopowder as the feedstock. The coatings were characterized by means of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. Photocatalytic activity was evaluated as a rate constant of decomposition reaction of methylene blue (MB) determined from the changes of relative concentration of MB with UV irradiation time. The results indicate that the sprayed TiO2 coatings were composed of both TiO2 phases viz. anatase and rutile, with different phase contents and crystallite sizes. A high anatase content of 80% by volume was achieved at 0.00015, fuel-to-oxygen ratio with nanostructure coating by grain size smaller than feedstock powder. Photocatalytic activity evaluation results indicated that all the TiO2 coatings are effective to degradation MB under UV radiation and their activities differ in different spray conditions. It is found that fuel flow rate strongly influenced on phase transformation of anatase to rutile and by optimizing the rate which can promote structural transformation and grain coarsening in coating and improving photocatalytic activity.

    • Synthesis, characterization and comparison of polythiophene–carbon nanocomposite materials as Pt electrocatalyst supports for fuel cell applications

      MOSTAFA NASROLLAHZADEH MOHSEN JAHANSHAHI MARYAM YALDAGARD MEHDI SALEHI

      More Details Abstract Fulltext PDF

      A novel polymer–carbon (PTh–C) nanocomposites containing different percentages of polythiophene (10, 20 and 50% (w/w)) and carbon (Vulcan XC-72)was prepared by a facile solution dispersion method and used to support platinum nanoparticles. The effect of using different percentages of polythiophene in nanocomposites and subsequently prepared electrocatalystswas investigated. The resultant electrocatalysts were extensively characterized by physical (X-ray diffraction (XRD) and transmission electron microscopy (TEM)) and electrochemical (cyclic voltammetry (CV)) techniques. The TEM results showed that the fine Pt nanoparticles prepared by ethylene glycol (EG) method were distributed on the surface of the 50% PTh–C nanocomposites successfully. From the XRD patterns, the average size of dispersed Pt nanoparticles with the face-centered cubic (fcc) structure on 50% PTh–C, 20% PTh–C, 10% PTh–C and carbon were about 4.9, 5.2, 5.4 and6.1 nm, respectively. The conductivity of PTh–C with different percentages of pure PTh was compared with the conductivity of the corresponding support of pure PTh. It is observed that the conductivity of 50% PTh–C nanocomposites is about 600 times higher than that of pure PTh. Finally, CV measurements of hydrogen and methanol oxidations indicated that Pt/50% PTh–C had a higher electrochemical surface area and higher catalytic activity for methanol oxidation reaction compared to other electrocatalysts. These measurements showed that the Pt/50% PTh–C electrocatalyst by the value of 3.85 had higher $I_{\rm f}/I_{\rm b}$ ratio with respect to Pt/10% PTh–C and Pt/20% PTh–C by the values of 2.66 and 2.0, respectively.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.