• MOHAMMED A ASSIRI

      Articles written in Bulletin of Materials Science

    • Exploring the electronic, optical and charge transfer properties of acene-based organic semiconductor materials

      AHMAD IRFAN ABDULLAH G AL-SEHEMI MOHAMMED A ASSIRI MUHAMMAD WASEEM MUMTAZ

      More Details Abstract Fulltext PDF

      In order to tune the optoelectronic and charge transfer properties of 4,6-di(thiophen-2-yl)pyrimidine (1), some new compounds were designed, i.e., 4,6-bis(benzo[$b$]thiophen-2-yl)pyrimidine (2), 4,6-bis(naphtho[2,3-b]thiophen-2-yl)pyrimidine (3), 4,6-bis(anthra[2,3-b]thiophen-2-yl)pyrimidine (4), 4,6-bis(tetraceno[2,3-$b$]thiophen-2-yl)pyrimidine (5) and 4,6-bis(pentaceno[2,3-$b$]thiophen-2-yl)pyrimidine (6). Compounds 2–6 were designed by assimilation of benzene, naphthalene, anthracene, tetracene and pentacene, respectively at both ends of compound 1. Integration of oligocene end cores reduces the energy gap resulting in a red shift in the absorption and fluorescence emission spectra. The legible intra-molecularcharge transfer is significant from electron-rich moieties to the electron-deficient core (pyrimidine). The elongation of $\pi$-conjugation led to escalate the electron affinity, lower the ionization potential and hole reorganization energy. The hole reorganization energies of compounds 3–6 exposed that these materials would be effective hole transport contenders to be used in diverse semiconductor devices.

    • Synthesis, characterization and quantum chemical study of optoelectronic nature of ferrocene derivatives

      AHMAD IRFAN FIRAS KHALIL AL-ZEIDANEEN ISHTIAQ AHMED ABDULLAH G AL-SEHEMI MOHAMMED A ASSIRI SAMI ULLAH GHULAM ABBAS

      More Details Abstract Fulltext PDF

      Two new ferrocene derivatives N-(2-hydroxy-5-methylphenyl) ferrocylideneamine (Fe1) and N-(2-hydroxy-5-chlorophenyl) ferrocylideneamine (Fe2) have been synthesized to study the effect on electronic, optical and charge transfer properties while changing the electron donating group with electron withdrawing group. The synthesized compounds were characterized by different spectroscopic (FTIR, UV–Vis, ${}^1$H NMR, ${}^{13}$C NMR) and spectrometric (EI) techniques. Thegeometries for ground and excited states were optimized by density functional theory (DFT/B3lyp/6-31G$^{**}$, LANL2DZ) and time-dependent DFT (TD-B3lyp/6-31G$^{**}$, LANL2DZ) levels, respectively. The absorption, fluorescence and phosphorescence spectra were estimated using TD-B3LYP and TD-wB97XD functionals and 6-31G$^{**}$ basis set for C, H, N, O and LANL2DZ for Fe atoms in dichloromethane.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.