• M Zulfequar

      Articles written in Bulletin of Materials Science

    • D.C. conductivity and spectroscopic studies of polyaniline doped with binary dopant ZrOCl2/AgI

      Kiran Kumari Vazid Ali Anand Kumar Sushil Kumar M Zulfequar

      More Details Abstract Fulltext PDF

      Aqueous binary dopant (ZrOCl2/AgI) is used in different ratios such as 1:1, 1:2 and 2:1 (w/w) for chemical doping to enhance the conductivity of synthesized polyaniline (PANI). The doping of polyaniline is carried out using tetrahydrofuran as a solvent. Doped samples are characterized using various techniques such as 𝐼–𝑉 characteristics, UV-visible spectroscopy, X-ray diffractometry (XRD), FTIR and photoluminescence (PL) studies. A significant enhancement in d.c. conductivity has been observed with the introduction of binary dopant. UV-visible study shows that optical parameters change considerably after doping. Interestingly, both direct and indirect bandgaps are observed in the doped samples. XRD patterns show the semi-crystalline nature of doped polyaniline. FTIR study shows structural modifications in functional groups with doping in PANI. Photoluminescence spectra exhibit emission properties of the samples.

    • Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films

      Ziaul Raza Khan M Zulfequar Mohd Shahid Khan

      More Details Abstract Fulltext PDF

      Highly-oriented CdTe thin films were fabricated on quartz and glass substrates by thermal evaporation technique in the vacuum of about 2 × 10-5 torr. The CdTe thin films were characterized by X-ray diffraction (XRD), UV–VIS–NIR, photoluminescence spectroscopy and scanning electron microscopy (SEM). X-ray diffraction results showed that the films were polycrystalline with cubic structure and had preferred growth of grains along the (111) crystallographic direction. Scanning electron micrographs showed that the growth of crystallites of comparable size on both the substrates. At the room temperature, photoluminescence spectra of the films on both the substrates showed sharp peaks with a maximum at 805 nm. This band showed significant narrowing suggesting that it originates from the transitions involving grain boundary defects. The refractive index of CdTe thin films was calculated using interference pattern of transmission spectra. The optical band gap of thin films was found to allow direct transition with energy gap of 1.47–1.50 eV. a.c. conductivity of CdTe thin films was found to increase with the increase in frequency whereas dielectric constant was observed to decrease with the increase in frequency.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.