• M Selvam

      Articles written in Bulletin of Materials Science

    • Effect of plating time on growth of nanocrystalline Ni–P from sulphate/glycine bath by electroless deposition method

      N Latha V Raj M Selvam

      More Details Abstract Fulltext PDF

      Nanocrystalline nickel phosphorus (NC-Ni–P) deposits from sulphate/glycine bath using a simple electroless deposition process is demonstrated. In the present investigation, nanoporous alumina films are formed on the aluminium surface by anodization process followed by deposition of nickel onto the pores by electroless plating method. Anodic aluminium oxide surface was first sensitized and activated by using palladium chloride solution before immersing into the electroless nickel bath. Electroless nickel plating was carried out from the optimized bath by changing the deposition time from 20 to 1800 s at a constant temperature of 80 °C and a pH of 4.0. Surface morphology, elemental composition, structure and reflectance of the deposits have been analysed by using scanning electron microscopy, atomic force microscopy, energy dispersive X-ray analysis, X-ray diffractometry and UV-visible spectroscopic studies, respectively. Electroless nickel deposits formed at an early stage produces dense uniform nanocrystals containing higher percentage of atomic phosphorus with cubic Ni (111) structure. As the deposition time increased, nanocrystalline sharp peak became amorphous and dimension of the crystal size varied from 54 to 72 nm.

    • Synthesis and characterization of electrochemically-reduced graphene

      M Selvam K Sakthipandi R Suriyaprabha K Saminathan V Rajendran

      More Details Abstract Fulltext PDF

      Graphene has superior electrical conductivity than graphite and other allotropes of carbon because of its high surface area and chemical tolerance. Electrochemically processed graphene sheets were obtained through the reduction of graphene oxide from hydrazine hydrate. The prepared samples were heated to different temperatures such as 673 and 873 K. X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), Raman spectra and conductivity measurements were made for as-prepared and heat-treated graphene samples. XRD pattern of graphene shows a sharp and intensive peak centred at a diffraction angle (2𝜃) of 26.350. FTIR spectra of as-prepared and heated graphene were used to confirm the oxidation of graphite. TEM results indicated that the defect density and number of layers of graphene sheets were varied with heating temperature. The hexagonal sheet morphology and purity of as-prepared and heat treated samples were confirmed by SEM–EDX and Raman spectroscopy. The conductivity measurements revealed that the conductivity of graphene was decreased with an increase in heating temperature. The present study explains that graphene with enhanced functional properties can be achieved from the as-prepared sample.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.