• M S Jogad

      Articles written in Bulletin of Materials Science

    • Conductivity studies of lithium zinc silicate glasses with varying lithium contents

      S K Deshpande V K Shrikhande M S Jogad P S Goyal G P Kothiyal

      More Details Abstract Fulltext PDF

      The electrical conductivity of lithium zinc silicate (LZS) glasses with composition, (SiO2)0.527 (Na2O)0.054(B2O3)0.05(P2O5)0.029(ZnO)0.34–𝑥(Li2O)𝑥 (𝑥 = 0.05, 0.08, 0.11, 0.18, 0.21, 0.24 and 0.27), was studied as a function of frequency in the range 100 Hz–15 MHz, over a temperature range from 546–637 K. The a.c. conductivity is found to obey Jonscher’s relation. The d.c. conductivity ($\sigma_{d.c.}$) and the hopping frequency($\omega_{h}$), inferred from the a.c. conductivity data, exhibit Arrhenius-type behaviour with temperature. The electrical modulus spectra show a single peak, indicating a single electrical relaxation time, 𝜏, which also exhibits Arrhenius-type behaviour. Values of activation energy derived from $\sigma_{d.c.}, \omega_{h}$ and 𝜏 are almost equal within the experimental error. It is seen that $\sigma_{d.c.}$ and $\omega_{h}$ increase systematically with Li2O content up to 21 mol% and then decrease for higher Li2O content, indicating a mixed alkali effect caused by mobile Li+ and Na+ ions. The scaling behaviour of the modulus suggests that the relaxation process is independent of temperature but depends upon Li+ concentration.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.