• M Ramakrishna Murthy

      Articles written in Bulletin of Materials Science

    • Ion-beam modifications of the surface morphology and conductivity in some polymer thin films

      M Ramakrishna Murthy E Venkateshwar Rao

      More Details Abstract Fulltext PDF

      Studies on the surface micromorphology and surface conductivity in thin polymer films of poly vinyl alcohol (PVA) and poly ethylene oxide (PEO) in both as-grown and ion-implanted polymer films have been carried out to reveal certain specific features of the ordered state in these materials. Optical microscopic investigations revealed the existence and enhanced formation in number of spherulites and dendrites in ionimplanted films relative to the as-grown films. The number and rate of formation of spherulites indicated an increase in the degree of crystallinity in these films. Measurements of surface conductivity of as-grown and ion-implanted polymer films, employing four-point probe method, indicated a decrease in electrical conductivity on ion-implantation. Photomicrographic analysis of the PVA and PEO thin film surfaces, has enabled to propose a temperature–stress induced mechanism of crystallization in conjunction with the surface conductivity measurements. The decrease in surface conductivity on ion-implantation in both PVA and PEO thin films, is attributed to a decrease in mobility of macromolecular charged species due to an increase in degree of crystallinity as has been observed by optical microscopy.

    • Ion beam modifications of defect sub-structure of calcite cleavages

      E Venkateshwar Rao M Ramakrishna Murthy

      More Details Abstract Fulltext PDF

      Experimental investigations on the defect sub-structure and surface modifications, brought about by He+ ion-bombardment of calcite cleavages (100), have been carried out. Optical and scanning electron microscopic investigations revealed drastic modifications on the surface morphology, local symmetry and defect concentration. Additional structural defects on ion-bombardment of calcite surfaces also have been observed. Changes in shape and form of chemical etch pits are found to be a function of ion-beam energy, as studied by optical microscopy. Radiation damage in calcite has been attributed mainly due to desorption of CO$^{-2}_{3}$ ions from the calcite surfaces, on irradiation. Measurements of surface conductivity on irradiated calcite surfaces have been made employing a four-probe technique. Enhancement of surface conductivity has been considered to be due to an increase in concentration of CO$^{-2}_{3}$ ions formed, on ion irradiation and subsequent thermal stimulation. Planar plastic anisotropy has been studied on irradiated calcite cleavages by measurement of microhardness.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.