M Mandal
Articles written in Bulletin of Materials Science
Volume 37 Issue 4 June 2014 pp 743-752
Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification
M Mandal D Singh Gouthama B S Murty S Sangal K Mondal
Present work deals with the preparation of spark plasma-sintered Cu–Zn aggregate (5, 10 and 20 wt% Zn) with interfacial bonding only starting from elemental powders of Cu and Zn (99.9% purity) and subsequently making of porous template of Cu by dezincification. Sintering is done so as to achieve only interfacial bonding with the aim to maintain maximum potential difference between the Cu and Zn particles during dezincification process in various solutions, viz. 1 N HCl and 3.5 wt% NaCl solutions. X-ray diffraction, optical microscopy and SEM–EDS are carried out to examine microstructural evolution and subsequent changes in hardness with sintering temperatures and different Zn percentages. Dezincification and pore formation are conducted on sintered 0.5 mm thick 12 mm diameter disc samples. The size, distribution and nature of pores in porous templates of Cu are then investigated using optical microscopy and SEM–EDS analysis.
Volume 37 Issue 6 October 2014 pp 1353-1367
Nanoporous Ag template from partially sintered Ag–Zn compact by dezincification
M Mandal A P Moon S Sangal K Mondal
A novel approach is followed to successfully fabricate nanoporous thin Ag template using partial sintering of elemental Ag and Zn (both have 99.9% purity) and subsequent dezincification. The starting materials for dezincification are partially sintered Ag–Zn aggregates (2.5, 5 and 10 wt% Zn). Partial sintering is done in order to achieve only interfacial bonding with the aim to maintain maximum potential difference between Ag and Zn particles during dezincification process in 1 N HCl and 3.5 wt% NaCl solutions. Two different dissolution methods, namely, simple immersion for 45 days and electrochemical way (holding the sample at critical potential), are employed. Electrochemical polarization tests are carried out to determine the critical potential for subsequent chrono-amperometry. X-ray diffraction, optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy are carried out to examine microstructural evolution, size, distribution and nature of pores in sintered aggregate as well as in template.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.