M Banerjee
Articles written in Bulletin of Materials Science
Volume 24 Issue 2 April 2001 pp 125-128
Mechanical characterization of microwave sintered zinc oxide
A K Mukhopadhyay M Ray Chaudhuri A Seal S K Dalui M Banerjee K K Phani
The mechanical characterization of microwave sintered zinc oxide disks is reported. The microwave sintering was done with a specially designed applicator placed in a domestic microwave oven operating at a frequency of 2.45 GHz to a maximum power output of 800 Watt. These samples with a wide variation of density and hence, of open pore volume percentage, were characterized in terms of its elastic modulus determination by ultrasonic time of flight measurement using a 15 MHz transducer. In addition, the load dependence of the microhardness was examined for the range of loads 0.1–20 N. Finally, the fracture toughness data (𝐾IC) was obtained using the indentation technique.
Volume 24 Issue 2 April 2001 pp 151-155
Mechanical properties of very thin cover slip glass disk
A Seal A K Dalui M Banerjee A K Mukhopadhyay K K Phani
The biaxial flexural strength, Young’s modulus, Vicker’s microhardness and fracture toughness data for very thin, commercial, soda-lime-silica cover slip glass (diameter, D-18 mm, thickness, T-0 3 mm; T/D ≈ 0.02) are reported here. The ball on ring biaxial flexure tests were conducted at room temperature as a function of the support ring diameter (≈10–20 mm) and cross head speed (0.1–10 mm min–1). In addition, the Weibull modulus data were also determined. The Young’s modulus data was measured using a linear variable differential transformer (LVDT) from biaxial flexure tests and was checked out to be comparable to the data obtained independently from the ultrasonic time of flight measurement using a 15 MHz transducer. The microhardness data was obtained for the applied load range of 0.1–20 N. The fracture toughness (𝐾IC) data was obtained by the indentation technique at an applied load of 20 N.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.