• Li Zhang

      Articles written in Bulletin of Materials Science

    • Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications

      Tao Geng Li Zhang Hongyan Wang Keying Zhang Xia Zhou

      More Details Abstract Fulltext PDF

      Porous tricobalt tetraoxide (Co3O4) nanoplates with large aspect ratio have been obtained by annealing Co(OH)2 precursor nanoplates synthesized by a facile reflux method without the need for any template or surfactant. After the heat treatment, the as-obtained phase-pure Co3O4 nanoplates with a wellretained structure were applied as the electrode material for supercapacitors, and the sample exhibits excellent performance with a high specific capacitance of 225 F g–1 after 2000 charge–discharge cycles at 2 A g–1, corresponding to a retention of 97% of the initial capacitance.

    • Fabrication of worm-like Ag2S nanocrystals under mediation of protein

      Dezhi Qin Li Zhang Xian Du Guangrui Yang Qiuxia Zhang

      More Details Abstract Fulltext PDF

      A simple protein-assisted method was reported to synthesize pepsin-conjugated Ag2S nanocrystals in aqueous solution. The morphology, composition and structure of the products were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, selected area electron diffraction and X-ray diffraction measurements. The results showed that as-prepared monoclinic Ag2S nanocrystals are worm-like nanochains in shape with sizes about 25 nm in diameter and up to hundreds of nanometres in length. The multiple coordinate bonds of pepsin molecules to the surface of Ag2S nanocrystals make as-prepared samples have good colloidal stability and biocompatibility as elucidated by Fourier transform infrared examination. Thermogravimetry–differential scanning calorimetry analysis indicated that the obtained products are inorganic–organic nanocomposites and there is strong interaction between Ag2S and pepsin. This interaction could result in the change of hydrophilic environment of pepsin and consequently intrinsic fluorescence of protein was quenched by Ag2S nanocrystals. Furthermore, the nanochains assembly of particle–particle and rod–rod oriented attachment was discussed to investigate the growth mechanism.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.