• LING WANG

      Articles written in Bulletin of Materials Science

    • Electrochemical sensor based on Na$^+$-doped g-C$_3$N$_4$ for detection of phenol

      HAO YONG YIN YI FAN ZHENG LING WANG

      More Details Abstract Fulltext PDF

      In this work, a novel and enhanced electrochemical sensor based on Na$^+$-doped g-C$_3$N$_4$ was constructed for the detection of phenol. First, the g-C$_3$N$_4$ was formed through polymerizing melamine under 520$^{\circ}$C. And then the Na$^+$-doped g-C$_3$N$_4$ was fabricated by a simple wet chemical method. The electrochemical sensor was constructed by modifying the carbon paper with the resulting Na$^+$-doped g-C$_3$N$_4$. The morphology, chemical compositions and structure of Na$^+$-dopedg-C$_3$N$_4$ were characterized by scanning electron microscopy, transmission electronic microscopy, energy-dispersive X-ray detector and X-ray diffraction. The Na$^+$-doped g-C$_3$N$_4$ electrode was used for the cyclic voltammetry and amperometric response detection of phenol in a 0.1 M phosphate buffer (pH 9.0). Under the optimal conditions, the prepared sensordisplayed good performance for the electrochemical detection of phenol with a wide linear range of 1–110 $\mu$M, as well as low detection limit of 0.23 $\mu$M.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.