• K VINOD

      Articles written in Bulletin of Materials Science

    • Structural studies of Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$ $+$ Ag superconducting system

      N RADHIKESH RAVEENDRAN A K SINHA R RAJARAMAN M PREMILA E P AMALADASS K VINOD J JANAKI S KALAVATHI AWADHESH MANI

      More Details Abstract Fulltext PDF

      We have studied for the first time the effect of Ag addition (0–15 wt%) to the superconducting system, Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$, on its crystal structure and local structural features, using synchrotron X-ray diffraction(SXRD) and Raman spectroscopy, respectively. SXRD and subsequent Rietveld refinement studies on powders of Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system indicate a small but significant change in lattice parameter upon Ag addition, showing evidence for possible incorporation of Ag to the extent of $\sim$1 wt%. Raman spectroscopic studies indicate that the parent structure of Nd$_{1.85}$Ce$_{0.15}CuO$_{4}$ remains unaffected with no major local structural changes on doping with silver. However, all Raman modes show minor phonon hardening upon Ag addition, which is consistent with the unit cell volume reduction as is observed in XRD. A systematic bleaching out of the apical oxygen defect mode was also observed with increased Ag addition. Polarized Raman measurements helped to identify the asymmetric nature of the B1g Raman mode. X-ray diffraction studies on pellets of Nd$_{1.85}$Ce$_{0.15}CuO$_4$ $+$ Ag system further indicate a randomization of preferred orientation upon Ag addition. The superconductivity of the Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system has been well characterized for all the compositions studied.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.