K T Jacob
Articles written in Bulletin of Materials Science
Volume 8 Issue 1 February 1986 pp 71-79
Phase relations and activities in the Co-Ni-O system at 1373 K
K T Jacob S Srikanth G N K Iyengar
The tie-lines delineating equilibria between CoO-NiO and Co-Ni solid solutions in the ternary Co-Ni-O system at 1373 K have been determined by electron microprobe and
Volume 8 Issue 4 October 1986 pp 453-465
Concept of thermodynamic capacity
The thermodynamic capacity of a species (
Volume 9 Issue 1 March 1987 pp 37-46
Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as Δ
Volume 12 Issue 5 December 1989 pp 481-493
Evaluation of the reactivity of titanium with mould materials during casting
R L Saha T K Nandy R D K Misra K T Jacob
A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.
Volume 13 Issue 4 September 1990 pp 235-244
Thermodynamic properties of Pt5La, Pt5Ce, Pt5Pr, Pt5Tb and Pt5 Tm intermetallics
The Gibbs’ energies of formation of Pt5La, Pt5Ce, Pt5Pr, Pt5Tb and Pt5 Tm intermetallic compounds have been determined in the temperature range 870–1100 K using the solid state cell:$$Ta,M + MF_3 /CaF_2 /Pt_5 M + Pt + MF_3 ,Ta$$.
The reversible emf of the cell is directly related to the Gibbs’ energy of formation of the Pt5M compound. The results can be summarized by the equations:$$\begin{gathered} \Delta G_f^ \circ \left\langle {Pt_5 La} \right\rangle = - 373,150 + 6 \cdot 60 T\left( { \pm 300} \right)J mol^{ - 1} \hfill \\ \Delta G_f^ \circ \left\langle {Pt_5 Ce} \right\rangle = - 367,070 + 5 \cdot 79 T\left( { \pm 300} \right)J mol^{ - 1} \hfill \\ \Delta G_f^ \circ \left\langle {Pt_5 Pr} \right\rangle = - 370,540 + 4 \cdot 69 T\left( { \pm 300} \right)J mol^{ - 1} \hfill \\ \Delta G_f^ \circ \left\langle {Pt_5 Tb} \right\rangle = - 372,280 + 4 \cdot 11 T\left( { \pm 300} \right)J mol^{ - 1} \hfill \\ \Delta G_f^ \circ \left\langle {Pt_5 Tm} \right\rangle = - 368,230 + 4 \cdot 89 T\left( { \pm 300} \right)J mol^{ - 1} \hfill \\ \end{gathered} $$ relative to the low temperature allotropic form of the lanthanide element and solid platinum as standard states The enthalpies of formation of all the Pt5M intermetallic compounds obtained in this study are in good agreement with Miedema’s model. The experimental values are more negative than those calculated using the model. The variation of the thermodynamic properties of Pt5M compounds with atomic number of the lanthanide element is discussed in relation to valence state and molar volume.
Volume 13 Issue 4 September 1990 pp 293-300
Electrical transport in magnesium aluminate
Tom Mathews K T Jacob J P Hajra
The conductivity of MgAl2O4 has been measured at 1273, 1473 and 1673 K as a function of the partial pressure of oxygen ranging from 105 to 10−14 Pa. The MgAl2O4 pellet, sandwiched between two platinum electrodes, was equilibrated with a flowing stream of either Ar + O2, CO + CO2 or Ar + H2 + H2O mixture of known composition. The gas mixture established a known oxygen partial pressure. All measurements were made at a frequency of 1 kHz. These measurements indicate pressure independent ionic conductivity in the range 1 to 10−14 Pa at 1273 K, 10−1 to 10−12 Pa at 1473 K and 10−1 to 10−4 Pa at 1673 K. The activation energy for ionic conduction is 1·48 eV, close to that for self-diffusion of Mg2+ ion in MgAl2O4 calculated from the theoretical relation of Glyde. Using the model, the energy for cation vacancy formation and activation energy for migration are estimated.
Volume 14 Issue 4 August 1991 pp 983-987 International Conference On Superconductivity—III
Gibbs’ energy of formation of YBa2Cu3O7-
A M Azad O M Sreedharan K T Jacob
The high temperature ceramic oxide superconductor YBa2Cu3O7-
Volume 17 Issue 6 November 1994 pp 1155-1166
New galvanic cell designs for minimizing electrode polarization
K T Jacob Sukanya Mukhopadhyay
New galvanic cell designs, incorporating one or two buffer electrodes, are developed to minimize the electrode polarization caused by electrochemical permeability of the electrolyte at high temperature. When a nonpolarizable reference electrode is employed, a cell with three-electrode compartments can be used to measure the chemical potential of oxygen in two-phase fields of ternary systems, associated with one degree of freedom at constant temperature. A buffer electrode is placed between the reference and measuring electrodes. The buffer electrode, maintained at approximately the same oxygen chemical potential as the measuring electrode, absorbs the semipermeability flux of oxygen between reference and measuring electrodes.
When the reference electrode is polarizable, two buffer electrodes are required between the reference and measuring electrodes. The reference and reference-buffer electrodes have the same chemical potential of the active species. Similarly the measuring electrode and its buffer are of approximately the same chemical potential. A significant chemical potential difference exists only between the two buffers, which may become polarized due to coupled transport of ions and electronic defects through the electrolyte. Since the reference and measuring electrodes are insulated, the emf of the solid state cell is unaffected. The use of the buffer electrode designs permit more accurate thermodynamic measurements on metal and ceramic systems at high temperature.
Volume 21 Issue 1 February 1998 pp 99-103 Rapid Communication
Alloy-oxide equilibria in the system Pt-Rh-O
K T Jacob Shashank Priya Yoshio Waseda
The composition of Pt-Rh alloys that co-exist with Rh2O3 in air have been identified by experiment at 1273 K. The isothermal sections of the phase diagram for the ternary system Pt-Rh-O at 973 K and 1273 K have been computed based on experimentally determined phase relations and recent thermodynamic measurements on Pt1−
Volume 22 Issue 4 June 1999 pp 741-749 Oxide Materials
System Cu-Rh-O: Phase diagram and thermodynamic properties of ternary oxides CuRhO2 and CuRh2O4
K T Jacob T H Okabe T Uda Y Waseda
An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox)
Volume 39 Issue 3 June 2016 pp 603-611
Stability field diagrams for
K T JACOB APOORVA DIXIT ARNEET RAJPUT
Isothermal stability field diagrams for
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.