• K Mondal

      Articles written in Bulletin of Materials Science

    • Electrochemical passivation behaviour of nanocrystalline Fe80Si20 coating in borate buffer solution

      G Gupta A P Moon K Mondal

      More Details Abstract Fulltext PDF

      Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route is studied and compared with that of the commercial pure iron and cast Fe80Si20 in sodium borate buffer solution at two different pH values (7.7 and 8.4). The coating reveals single passivation at a pH of 7.7 and double stage passivity at a pH of 8.4. The first passive layer is due to the dissolution mechanism and second passivity is related to stable passivation. The cast sample shows single stage passivity in the solution of pH 8.4. The difference in the passivation behaviour for the cast alloy (Fe80Si20) and the coating is related to the presence of highly iron-enriched localized regions, formed during the processing stage of coating.

    • Relook on fitting of viscosity with undercooling of glassy liquids

      C Chattopadhyay S Sangal K Mondal

      More Details Abstract Fulltext PDF

      The present approach is on the modification of viscosity fitting of undercooled liquid as a function of undercooling. The method consists of finding analytical solution of three arbitrary constants of the Vogel–Fulcher–Tamman (VFT) equation by choosing three viscosity data at three critical temperatures for an undercooled liquid. Three critical temperatures are liquidus temperature (𝑇l), crystallization onset temperature (𝑇x) and glass transition temperature (𝑇g). The experimental viscosity data at or very near to these three critical temperatures (depending on the availability in literature) have been utilized to achieve the analytical solution. The analytical solution of VFT equation is further examined by selecting the experimental data points away from the critical temperatures in order to check their (𝑇l, 𝑇x and 𝑇g) significance towards the solution. Total absolute error (TAE) and total squared error (TSE) values obtained from the present method with respect to the experimental viscosity data in the temperature range between 𝑇l and 𝑇g are very much comparable and in most of the cases lower than that of existing `best-fit' cited in the literature for a number of glassy alloys. Moreover, this method interestingly enables us to find the fragility parameters for a number of glassy alloys and convincingly explain their true glass forming abilities (GFA).

    • Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification

      M Mandal D Singh Gouthama B S Murty S Sangal K Mondal

      More Details Abstract Fulltext PDF

      Present work deals with the preparation of spark plasma-sintered Cu–Zn aggregate (5, 10 and 20 wt% Zn) with interfacial bonding only starting from elemental powders of Cu and Zn (99.9% purity) and subsequently making of porous template of Cu by dezincification. Sintering is done so as to achieve only interfacial bonding with the aim to maintain maximum potential difference between the Cu and Zn particles during dezincification process in various solutions, viz. 1 N HCl and 3.5 wt% NaCl solutions. X-ray diffraction, optical microscopy and SEM–EDS are carried out to examine microstructural evolution and subsequent changes in hardness with sintering temperatures and different Zn percentages. Dezincification and pore formation are conducted on sintered 0.5 mm thick 12 mm diameter disc samples. The size, distribution and nature of pores in porous templates of Cu are then investigated using optical microscopy and SEM–EDS analysis.

    • Nanoporous Ag template from partially sintered Ag–Zn compact by dezincification

      M Mandal A P Moon S Sangal K Mondal

      More Details Abstract Fulltext PDF

      A novel approach is followed to successfully fabricate nanoporous thin Ag template using partial sintering of elemental Ag and Zn (both have 99.9% purity) and subsequent dezincification. The starting materials for dezincification are partially sintered Ag–Zn aggregates (2.5, 5 and 10 wt% Zn). Partial sintering is done in order to achieve only interfacial bonding with the aim to maintain maximum potential difference between Ag and Zn particles during dezincification process in 1 N HCl and 3.5 wt% NaCl solutions. Two different dissolution methods, namely, simple immersion for 45 days and electrochemical way (holding the sample at critical potential), are employed. Electrochemical polarization tests are carried out to determine the critical potential for subsequent chrono-amperometry. X-ray diffraction, optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy are carried out to examine microstructural evolution, size, distribution and nature of pores in sintered aggregate as well as in template.

© 2017 Indian Academy of Sciences, Bengaluru.